ترغب بنشر مسار تعليمي؟ اضغط هنا

Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation

179   0   0.0 ( 0 )
 نشر من قبل Hang Zhou
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While accurate lip synchronization has been achieved for arbitrary-subject audio-driven talking face generation, the problem of how to efficiently drive the head pose remains. Previous methods rely on pre-estimated structural information such as landmarks and 3D parameters, aiming to generate personalized rhythmic movements. However, the inaccuracy of such estimated information under extreme conditions would lead to degradation problems. In this paper, we propose a clean yet effective framework to generate pose-controllable talking faces. We operate on raw face images, using only a single photo as an identity reference. The key is to modularize audio-visual representations by devising an implicit low-dimension pose code. Substantially, both speech content and head pose information lie in a joint non-identity embedding space. While speech content information can be defined by learning the intrinsic synchronization between audio-visual modalities, we identify that a pose code will be complementarily learned in a modulated convolution-based reconstruction framework. Extensive experiments show that our method generates accurately lip-synced talking faces whose poses are controllable by other videos. Moreover, our model has multiple advanced capabilities including extreme view robustness and talking face frontalization. Code, models, and demo videos are available at https://hangz-nju-cuhk.github.io/projects/PC-AVS.



قيم البحث

اقرأ أيضاً

106 - Yang Song , Jingwen Zhu , Dawei Li 2018
Given an arbitrary face image and an arbitrary speech clip, the proposed work attempts to generating the talking face video with accurate lip synchronization while maintaining smooth transition of both lip and facial movement over the entire video cl ip. Existing works either do not consider temporal dependency on face images across different video frames thus easily yielding noticeable/abrupt facial and lip movement or are only limited to the generation of talking face video for a specific person thus lacking generalization capacity. We propose a novel conditional video generation network where the audio input is treated as a condition for the recurrent adversarial network such that temporal dependency is incorporated to realize smooth transition for the lip and facial movement. In addition, we deploy a multi-task adversarial training scheme in the context of video generation to improve both photo-realism and the accuracy for lip synchronization. Finally, based on the phoneme distribution information extracted from the audio clip, we develop a sample selection method that effectively reduces the size of the training dataset without sacrificing the quality of the generated video. Extensive experiments on both controlled and uncontrolled datasets demonstrate the superiority of the proposed approach in terms of visual quality, lip sync accuracy, and smooth transition of lip and facial movement, as compared to the state-of-the-art.
Our ability to sample realistic natural images, particularly faces, has advanced by leaps and bounds in recent years, yet our ability to exert fine-tuned control over the generative process has lagged behind. If this new technology is to find practic al uses, we need to achieve a level of control over generative networks which, without sacrificing realism, is on par with that seen in computer graphics and character animation. To this end we propose ConfigNet, a neural face model that allows for controlling individual aspects of output images in semantically meaningful ways and that is a significant step on the path towards finely-controllable neural rendering. ConfigNet is trained on real face images as well as synthetic face renders. Our novel method uses synthetic data to factorize the latent space into elements that correspond to the inputs of a traditional rendering pipeline, separating aspects such as head pose, facial expression, hair style, illumination, and many others which are very hard to annotate in real data. The real images, which are presented to the network without labels, extend the variety of the generated images and encourage realism. Finally, we propose an evaluation criterion using an attribute detection network combined with a user study and demonstrate state-of-the-art individual control over attributes in the output images.
The objective of this paper is a neural network model that controls the pose and expression of a given face, using another face or modality (e.g. audio). This model can then be used for lightweight, sophisticated video and image editing. We make th e following three contributions. First, we introduce a network, X2Face, that can control a source face (specified by one or more frames) using another face in a driving frame to produce a generated frame with the identity of the source frame but the pose and expression of the face in the driving frame. Second, we propose a method for training the network fully self-supervised using a large collection of video data. Third, we show that the generation process can be driven by other modalities, such as audio or pose codes, without any further training of the network. The generation results for driving a face with another face are compared to state-of-the-art self-supervised/supervised methods. We show that our approach is more robust than other methods, as it makes fewer assumptions about the input data. We also show examples of using our framework for video face editing.
Speech-driven facial animation is useful for a variety of applications such as telepresence, chatbots, etc. The necessary attributes of having a realistic face animation are 1) audio-visual synchronization (2) identity preservation of the target indi vidual (3) plausible mouth movements (4) presence of natural eye blinks. The existing methods mostly address the audio-visual lip synchronization, and few recent works have addressed the synthesis of natural eye blinks for overall video realism. In this paper, we propose a method for identity-preserving realistic facial animation from speech. We first generate person-independent facial landmarks from audio using DeepSpeech features for invariance to different voices, accents, etc. To add realism, we impose eye blinks on facial landmarks using unsupervised learning and retargets the person-independent landmarks to person-specific landmarks to preserve the identity-related facial structure which helps in the generation of plausible mouth shapes of the target identity. Finally, we use LSGAN to generate the facial texture from person-specific facial landmarks, using an attention mechanism that helps to preserve identity-related texture. An extensive comparison of our proposed method with the current state-of-the-art methods demonstrates a significant improvement in terms of lip synchronization accuracy, image reconstruction quality, sharpness, and identity-preservation. A user study also reveals improved realism of our animation results over the state-of-the-art methods. To the best of our knowledge, this is the first work in speech-driven 2D facial animation that simultaneously addresses all the above-mentioned attributes of a realistic speech-driven face animation.
We present AlignNet, a model that synchronizes videos with reference audios under non-uniform and irregular misalignments. AlignNet learns the end-to-end dense correspondence between each frame of a video and an audio. Our method is designed accordin g to simple and well-established principles: attention, pyramidal processing, warping, and affinity function. Together with the model, we release a dancing dataset Dance50 for training and evaluation. Qualitative, quantitative and subjective evaluation results on dance-music alignment and speech-lip alignment demonstrate that our method far outperforms the state-of-the-art methods. Project video and code are available at https://jianrenw.github.io/AlignNet.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا