ترغب بنشر مسار تعليمي؟ اضغط هنا

Transition in the supercritical state of matter: experimental evidence

101   0   0.0 ( 0 )
 نشر من قبل Cillian Cockrell
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A large and mostly unexplored part of the phase diagram lies above the critical point. The supercritical matter was traditionally believed to be physically homogeneous with no discernible differences between liquidlike and gaslike states. More recently, several proposals have been put forward challenging this view, and here we review the history of this research. Close to the critical point, persisting critical anomalies enable the separation of the supercritical state into two different states. About a decade ago, it was proposed that the Frenkel line (FL), corresponding to the dynamical transition of particle motion and related thermodynamic and structural transitions, gives a unique and path-independent way to separate the supercritical states into two qualitatively different states and extends to arbitrarily high pressure and temperature on the phase diagram. Here, we review several lines of enquiry that followed. We focus on the experimental evidence of transitions in deeply supercritical Ne, N$_2$, CH$_4$, C$_2$H$_6$, CO$_2$ and H$_2$O at the FL detected by a number of techniques including X-ray, neutron and Raman scattering experiments. %Except for H$_2$O, these experiments were stimulated by the FL and followed the state points of the FL mapped in preceding calculations. We subsequently summarise other developments in the field, including recent extensions of analysis of dynamics at the FL, quantum simulations, topological and geometrical approaches as well as universality of properties at the FL. Finally, we review current theoretical understanding of the supercritical state and list open problems in the field.



قيم البحث

اقرأ أيضاً

125 - L. Wang , C. Yang , M. T. Dove 2019
A hallmark of a thermodynamic phase transition is the qualitative change of system thermodynamic properties such as energy and heat capacity. On the other hand, no phase transition is thought to operate in the supercritical state of matter and, for t his reason, it was believed that supercritical thermodynamic properties vary smoothly and without any qualitative changes. Here, we perform extensive molecular dynamics simulations in a wide temperature range and find that a deeply supercritical state is thermodynamically heterogeneous, as witnessed by different temperature dependence of energy, heat capacity and its derivatives at low and high temperature. The evidence comes from three different methods of analysis, two of which are model-independent. We propose a new definition of the relative width of the thermodynamic crossover and calculate it to be in the fairly narrow relative range of 13-20%. On the basis of our results, we relate the crossover to the supercritical Frenkel line.
Physics of supercritical state is understood to a much lesser degree compared to subcritical liquids. Carbon dioxide in particular has been intensely studied, yet little is known about the supercritical part of its phase diagram. Here, we combine neu tron scattering experiments and molecular dynamics simulations and demonstrate the structural crossover at the Frenkel line. The crossover is seen at pressures as high as 14 times the critical pressure and is evidenced by changes of the main features of the structure factor and pair distribution functions.
124 - T. Bryk , I. Mryglod 2016
We comment on an expression for positive sound dispersion (PSD) in fluids and analysis of PSD from molecular dynamics simulations reported in the Letter by Fomin et al (J.Phys.:Condens.Matt. v.28, 43LT01, 2016)
227 - T. Brazda , A. Silva , N. Manini 2018
The possibility to achieve entirely frictionless, i.e. superlubric, sliding between solids, holds enormous potential for the operation of mechanical devices. At small length scales, where mechanical contacts are well-defined, Aubry predicted a transi tion from a superlubric to a pinned state when the mechanical load is increased. Evidence for this intriguing Aubry transition (AT), which should occur in one dimension (1D) and at zero temperature, was recently obtained in few-atom chains. Here, we experimentally and theoretically demonstrate the occurrence of the AT in an extended two-dimensional (2D) system at room temperature using a colloidal monolayer on an optical lattice. Unlike the continuous nature of the AT in 1D, we observe a first-order transition in 2D leading to a coexistence regime of pinned and unpinned areas. Our data demonstrate that the original concept of Aubry does not only survive in 2D but is relevant for the design of nanoscopic machines and devices at ambient temperature.
We propose a unified model combining the first-order liquid-liquid and the second-order ferroelectric phase transitions models and explaining various features of the $lambda$-point of liquid water within a single theoretical framework. It becomes cle ar within the proposed model that not only does the long-range dipole-dipole interaction of water molecules yield a large value of dielectric constant $epsilon$ at room temperatures, our analysis shows that the large dipole moment of the water molecules also leads to a ferroelectric phase transition at a temperature close to the lambda-point. Our more refined model suggests that the phase transition occurs only in the low density component of the liquid and is the origin of the singularity of the dielectric constant recently observed in experiments with supercooled liquid water at temperature T~233K. This combined model agrees well with nearly every available set of experiments and explains most of the well-known and even recently obtained results of MD simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا