ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Bogomolov-Gieseker inequality for tame Deligne-Mumford surfaces

108   0   0.0 ( 0 )
 نشر من قبل Jiang Yunfeng
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We generalize the Bogomolov-Gieseker inequality for semistable coherent sheaves on smooth projective surfaces to smooth Deligne-Mumford surfaces. We work over positive characteristic $p>0$ and generalize Langers method to smooth Deligne-Mumford stacks. As applications we obtain the Bogomolov inequality for semistable coherent sheaves on a Deligne-Mumford surface in characteristic zero, and the Bogomolov inequality for semistable sheaves on a root stack over a smooth surface which is equivalent to the Bogomolov inequality for the rational parabolic sheaves on a smooth surface $S$. In a joint appendix with Hao Max Sun, we generalize the Bogomolov inequality formula to Simpson Higgs sheaves on tame Deligne-Mumford stacks.



قيم البحث

اقرأ أيضاً

We prove a Bogomolov-Gieseker type inequality for the third Chern characters of stable sheaves on Calabi-Yau 3-folds and a large class of Fano 3-folds with given rank and first and second Chern classes. The proof uses the spreading-out technique, van ishings from the tilt-stability conditions, and Langers estimation theorem of the global sections of torsion free sheaves. In particular, the result implies that the conjectural sufficient conditions on the Chern numbers for the existence of stable sheaves on a Calabi-Yau 3-fold by Douglas-Reinbacher-Yau needs to be modified.
135 - Yijie Lin 2020
We generalize the construction of a moduli space of semistable pairs parametrizing isomorphism classes of morphisms from a fixed coherent sheaf to any sheaf with fixed Hilbert polynomial under a notion of stability to the case of projective Deligne-M umford stacks. We study the deformation and obstruction theories of stable pairs, and then prove the existence of virtual fundamental classes for some cases of dimension two and three. This leads to a definition of Pandharipande-Thomas invariants on three-dimensional smooth projective Deligne-Mumford stacks.
204 - Hiroshi Iritani 2019
We introduce a global Landau-Ginzburg model which is mirror to several toric Deligne-Mumford stacks and describe the change of the Gromov-Witten theories under discrepant transformations. We prove a formal decomposition of the quantum cohomology D-mo dules (and of the all-genus Gromov-Witten potentials) under a discrepant toric wall-crossing. In the case of weighted blowups of weak-Fano compact toric stacks along toric centres, we show that an analytic lift of the formal decomposition corresponds, via the $widehat{Gamma}$-integral structure, to an Orlov-type semiorthogonal decomposition of topological $K$-groups. We state a conjectural functoriality of Gromov-Witten theories under discrepant transformations in terms of a Riemann-Hilbert problem.
75 - Yunfeng Jiang 2019
Motivated by the S-duality conjecture of Vafa-Witten, Tanaka-Thomas have developed a theory of Vafa-Witten invariants for projective surfaces using the moduli space of Higgs sheaves. Their definition and calculation prove the S-duality prediction of Vafa-Witten in many cases in the side of gauge group $SU(r)$. In this survey paper for ICCM-2019 we review the S-duality conjecture in physics by Vafa-Witten and the definition of Vafa-Witten invariants for smooth projective surfaces and surface Deligne-Mumford stacks. We make a prediction that the Vafa-Witten invariants for Deligne-Mumford surfaces may give the generating series for the Langlands dual group $^{L}SU(r)=SU(r)/zz_r$. We survey a check for the projective plane $pp^2$.
256 - Quentin Gendron 2015
The main goal of this work is to construct and study a reasonable compactification of the strata of the moduli space of Abelian differentials. This allows us to compute the Kodaira dimension of some strata of the moduli space of Abelian differentials . The main ingredients to study the compactifications of the strata are a version of the plumbing cylinder construction for differential forms and an extension of the parity of the connected components of the strata to the differentials on curves of compact type. We study in detail the compactifications of the hyperelliptic minimal strata and of the odd minimal stratum in genus three.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا