Star formation scaling relations at ~100 pc from PHANGS: Impact of completeness and spatial scale


الملخص بالإنكليزية

Aims: The complexity of star formation at the physical scale of molecular clouds is not yet fully understood. We investigate the mechanisms regulating the formation of stars in different environments within nearby star-forming galaxies from the PHANGS sample. Methods: Integral field spectroscopic data and radio-interferometric observations of 18 galaxies were combined to explore the existence of the resolved star formation main sequence (rSFMS), resolved Kennicutt-Schmidt relation (rKS), and resolved molecular gas main sequence (rMGMS), and we derived their slope and scatter at spatial resolutions from 100 pc to 1 kpc (under various assumptions). Results: All three relations were recovered at the highest spatial resolution (100 pc). Furthermore, significant variations in these scaling relations were observed across different galactic environments. The exclusion of non-detections has a systematic impact on the inferred slope as a function of the spatial scale. Finally, the scatter of the $Sigma_mathrm{mol. gas + stellar}$ versus $Sigma_mathrm{SFR}$ correlation is smaller than that of the rSFMS, but higher than that found for the rKS. Conclusions: The rMGMS has the tightest relation at a spatial scale of 100 pc (scatter of 0.34 dex), followed by the rKS (0.41 dex) and then the rSFMS (0.51 dex). This is consistent with expectations from the timescales involved in the evolutionary cycle of molecular clouds. Surprisingly, the rKS shows the least variation across galaxies and environments, suggesting a tight link between molecular gas and subsequent star formation. The scatter of the three relations decreases at lower spatial resolutions, with the rKS being the tightest (0.27 dex) at a spatial scale of 1 kpc. Variation in the slope of the rSFMS among galaxies is partially due to different detection fractions of $Sigma_mathrm{SFR}$ with respect to $Sigma_mathrm{stellar}$.

تحميل البحث