ﻻ يوجد ملخص باللغة العربية
We describe spacelike and timelike (causally connected) events on an equal footing by utilizing detectors coupled to timers that store information about a given system and the moment of measurement. By tracing out the system and focusing on the detectors and timers states, events are represented by a tensor product structure. Furthermore, including a time register gives rise to a temporal superposition analogous to the familiar spatial superposition in quantum mechanics. We verify that the presence of coherence can ensure a causal connection between events. We also propose a causal correlation function involving the detection times to characterize the type of events. Finally, we verify that our formalism allows us to simultaneously apply quantum information concepts to spacelike and timelike events. In this context we observe, in the limit of instantaneous measurements, a deterministic relationship between causally connected events similar to that of spatially entangled physical systems; i.e. observing the state of one of the systems (in our case, knowing a previous event), enables us to learn precisely the state of the other system (we delineate a later event).
The aim of the present paper is twofold. First, to give the main ideas behind quantum computingand quantum information, a field based on quantum-mechanical phenomena. Therefore, a shortreview is devoted to (i) quantum bits or qubits (and more general
We give a pedagogical introduction of the stochastic variational method and show that this generalized variational principle describes classical and quantum mechanics in a unified way.
An entanglement measure for a bipartite quantum system is a state functional that vanishes on separable states and that does not increase under separable (local) operations. It is well-known that for pure states, essentially all entanglement measures
The phase space of a relativistic system can be identified with the future tube of complexified Minkowski space. As well as a complex structure and a symplectic structure, the future tube, seen as an eight-dimensional real manifold, is endowed with a
The classical Einstein-Hilbert (EH) action for general relativity (GR) is shown to be formally analogous to the classical system with position-dependent mass (PDM) models. The analogy is developed and used to build the covariant classical Hamiltonian