ﻻ يوجد ملخص باللغة العربية
Self-supervised learning (especially contrastive learning) has attracted great interest due to its tremendous potentials in learning discriminative representations in an unsupervised manner. Despite the acknowledged successes, existing contrastive learning methods suffer from very low learning efficiency, e.g., taking about ten times more training epochs than supervised learning for comparable recognition accuracy. In this paper, we discover two contradictory phenomena in contrastive learning that we call under-clustering and over-clustering problems, which are major obstacles to learning efficiency. Under-clustering means that the model cannot efficiently learn to discover the dissimilarity between inter-class samples when the negative sample pairs for contrastive learning are insufficient to differentiate all the actual object categories. Over-clustering implies that the model cannot efficiently learn the feature representation from excessive negative sample pairs, which enforces the model to over-cluster samples of the same actual categories into different clusters. To simultaneously overcome these two problems, we propose a novel self-supervised learning framework using a median triplet loss. Precisely, we employ a triplet loss tending to maximize the relative distance between the positive pair and negative pairs to address the under-clustering problem; and we construct the negative pair by selecting the negative sample of a median similarity score from all negative samples to avoid the over-clustering problem, guaranteed by the Bernoulli Distribution model. We extensively evaluate our proposed framework in several large-scale benchmarks (e.g., ImageNet, SYSU-30k, and COCO). The results demonstrate the superior performance (e.g., the learning efficiency) of our model over the latest state-of-the-art methods by a clear margin. Codes available at: https://github.com/wanggrun/triplet.
This paper investigates two techniques for developing efficient self-supervised vision transformers (EsViT) for visual representation learning. First, we show through a comprehensive empirical study that multi-stage architectures with sparse self-att
We present a novel technique for self-supervised video representation learning by: (a) decoupling the learning objective into two contrastive subtasks respectively emphasizing spatial and temporal features, and (b) performing it hierarchically to enc
Unsupervised visual representation learning remains a largely unsolved problem in computer vision research. Among a big body of recently proposed approaches for unsupervised learning of visual representations, a class of self-supervised techniques ac
We propose SelfDoc, a task-agnostic pre-training framework for document image understanding. Because documents are multimodal and are intended for sequential reading, our framework exploits the positional, textual, and visual information of every sem
Recent advances in deep learning have achieved promising performance for medical image analysis, while in most cases ground-truth annotations from human experts are necessary to train the deep model. In practice, such annotations are expensive to col