ﻻ يوجد ملخص باللغة العربية
Recent studies have shown convolutional neural networks (CNNs) can be trained to perform modal decomposition using intensity images of optical fields. A fundamental limitation of these techniques is that the modal phases can not be uniquely calculated using a single intensity image. The knowledge of modal phases is crucial for wavefront sensing, alignment and mode matching applications. Heterodyne imaging techniques can provide images of the transverse complex amplitude & phase profile of laser beams at high resolutions and frame rates. In this work we train a CNN to perform modal decomposition using simulated heterodyne images, allowing the complete modal phases to be predicted. This is to our knowledge the first machine learning decomposition scheme to utilize complex phase information to perform modal decomposition. We compare our network with a traditional overlap integral & center-of-mass centering algorithm and show that it is both less sensitive to beam centering and on average more accurate.
The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its m
The boundary problem of linear classical optics about the interaction of electromagnetic radiation with a thin dielectric film has been solved under explicit consideration of its discrete structure. The main attention has been paid to the investigati
The finite-difference time-domain (FDTD) method is employed to solve the three dimensional Maxwell equation for the situation of near-field microscopy using a sub-wavelength aperture. Experimental result on unexpected high spatial resolution is reproduced by our computer simulation.
We report a broadband diffractive optical neural network design that simultaneously processes a continuum of wavelengths generated by a temporally-incoherent broadband source to all-optically perform a specific task learned using deep learning. We ex
Recently, physics-driven deep learning methods have shown particular promise for the prediction of physical fields, especially to reduce the dependency on large amounts of pre-computed training data. In this work, we target the physics-driven learnin