ﻻ يوجد ملخص باللغة العربية
A spectral-energy distribution (SED) model for Type Ia supernovae (SNe Ia) is a critical tool for measuring precise and accurate distances across a large redshift range and constraining cosmological parameters. We present an improved model framework, SALT3, which has several advantages over current models including the leading SALT2 model (SALT2.4). While SALT3 has a similar philosophy, it differs from SALT2 by having improved estimation of uncertainties, better separation of color and light-curve stretch, and a publicly available training code. We present the application of our training method on a cross-calibrated compilation of 1083 SNe with 1207 spectra. Our compilation is $2.5times$ larger than the SALT2 training sample and has greatly reduced calibration uncertainties. The resulting trained SALT3.K21 model has an extended wavelength range $2000$-$11000$ angstroms (1800 angstroms redder) and reduced uncertainties compared to SALT2, enabling accurate use of low-$z$ $I$ and $iz$ photometric bands. Including these previously discarded bands, SALT3.K21 reduces the Hubble scatter of the low-z Foundation and CfA3 samples by 15% and 10%, respectively. To check for potential systematic uncertainties we compare distances of low ($0.01<z<0.2$) and high ($0.4<z<0.6$) redshift SNe in the training compilation, finding an insignificant $2pm14$ mmag shift between SALT2.4 and SALT3.K21. While the SALT3.K21 model was trained on optical data, our method can be used to build a model for rest-frame NIR samples from the Roman Space Telescope. Our open-source training code, public training data, model, and documentation are available at https://saltshaker.readthedocs.io/en/latest/, and the model is integrated into the sncosmo and SNANA software packages.
Recent analyses suggest that distance residuals measured from Type Ia supernovae (SNe Ia) are correlated with local host galaxy properties within a few kpc of the SN explosion. However, the well-established correlation with global host galaxy propert
We study the observables of 158 relatively normal Type Ia supernovae (SNe Ia) by dividing them into two groups in terms of the expansion velocity inferred from the absorption minimum of the Si II 6355 line in their spectra near B-band maximum brightn
Context. Our Local Group of galaxies appears to be moving relative to the cosmic microwave background with the source of the peculiar motion still uncertain. While in the past this has been studied mostly using galaxies as distance indicators, the we
We measured high-quality surface brightness fluctuation (SBF) distances for a sample of 63 massive early-type galaxies using the WFC3/IR camera on the Hubble Space Telescope. The median uncertainty on the SBF distance measurements is 0.085 mag, or 3.
Type Ia Supernovae (SNe Ia) are widely used to measure the expansion of the Universe. Improving distance measurements of SNe Ia is one technique to better constrain the acceleration of expansion and determine its physical nature. This document develo