ﻻ يوجد ملخص باللغة العربية
We study the contributions to the relativistic Fe $K_{alpha}$ line profile from higher order images (HOIs) produced by strongly deflected rays from the disk which cross the plunging region, located between the innermost stable circular orbit (ISCO) radius and the event horizon of a Kerr black hole. We investigate the characteristics features imprinted by the HOIs in the line profile for different black hole spins, disk emissivity laws and inclinations. We find that they extend from the red wing of the profile up to energies slightly lower than those of the blue peak, adding $sim 0.4 - 1.3$% to the total line flux. The contribution to the specific flux is often in the $sim 1$% to 7% range, with the highest values attained for low and negative spin ($alesssim 0.3$) black holes surrounded by intermediate inclination angle ($isim40^{circ}$) disks. We simulate future observations of a black hole X-ray binary system with the Large Area Detector of the planned X-ray astronomy emph{enhanced X-ray Timing and Polarimetry Mission} (eXTP) and find that the fekal of systems accreting at $lesssim 1 $% the Eddington rate are affected by the HOI features for a range of parameters. This would provide evidence of the extreme gravitational lensing of HOI rays. Our simulations show also that not accounting for HOI contributions to the Fe $K_{alpha}$ line profile may systematically bias measurements of the black hole spin parameter towards values higher by up to $sim 0.3$ than the inputted ones.
The shapes of relativistic iron lines observed in spectra of candidate black holes carry the signatures of the strong gravitational fields in which the accretion disks lie. These lines result from the sum of the contributions of all images of the dis
Observations of the fluorescent Fe K-alpha emission line from the inner accretion flows of stellar mass black holes in X-ray binaries and supermassive black holes in Active Galactic Nuclei have become an important tool to study the magnitude and incl
Several active galactic nuclei and microquasars are observed to eject plasmoids that move at relativistic speeds. We envisage the plasmoids as pre-existing current carrying magnetic flux ropes that were initially anchored in the accretion disk-corona
A number of neutron star low-mass X-ray binaries have recently been discovered to show broad, asymmetric Fe K emission lines in their X-ray spectra. These lines are generally thought to be the most prominent part of a reflection spectrum, originating
We discuss the issues of stability of accretion disks that may undergo the limit-cycle oscillations due to the two main types of thermal-viscous instabilities. These are induced either by the domination of radiation pressure in the innermost regions