ﻻ يوجد ملخص باللغة العربية
User active authentication on mobile devices aims to learn a model that can correctly recognize the enrolled user based on device sensor information. Due to lack of negative class data, it is often modeled as a one-class classification problem. In practice, mobile devices are connected to a central server, e.g, all android-based devices are connected to Google server through internet. This device-server structure can be exploited by recently proposed Federated Learning (FL) and Split Learning (SL) frameworks to perform collaborative learning over the data distributed among multiple devices. Using FL/SL frameworks, we can alleviate the lack of negative data problem by training a user authentication model over multiple user data distributed across devices. To this end, we propose a novel user active authentication training, termed as Federated Active Authentication (FAA), that utilizes the principles of FL/SL. We first show that existing FL/SL methods are suboptimal for FAA as they rely on the data to be distributed homogeneously (i.e. IID) across devices, which is not true in the case of FAA. Subsequently, we propose a novel method that is able to tackle heterogeneous/non-IID distribution of data in FAA. Specifically, we first extract feature statistics such as mean and variance corresponding to data from each user which are later combined in a central server to learn a multi-class classifier and sent back to the individual devices. We conduct extensive experiments using three active authentication benchmark datasets (MOBIO, UMDAA-01, UMDAA-02) and show that such approach performs better than state-of-the-art one-class based FAA methods and is also able to outperform traditional FL/SL methods.
Despite the blooming success of architecture search for vision tasks in resource-constrained environments, the design of on-device object detection architectures have mostly been manual. The few automated search efforts are either centered around non
Federated learning (FL) is experiencing a fast booming with the wave of distributed machine learning and ever-increasing privacy concerns. In the FL paradigm, global model aggregation is handled by a centralized aggregate server based on local update
Recurrent neural networks (RNNs) have shown promising results in audio and speech processing applications due to their strong capabilities in modelling sequential data. In many applications, RNNs tend to outperform conventional models based on GMM/UB
In order to address the increasing compromise of user privacy on mobile devices, a Fuzzy Logic based implicit authentication scheme is proposed in this paper. The proposed scheme computes an aggregate score based on selected features and a threshold
An increasing need of running Convolutional Neural Network (CNN) models on mobile devices with limited computing power and memory resource encourages studies on efficient model design. A number of efficient architectures have been proposed in recent