ﻻ يوجد ملخص باللغة العربية
We have performed a quantum mechanical analysis of travelling-wave parametric amplifiers (TWPAs) in order to investigate five experimental phenomena related to their operations, namely the effect of impedance mismatch, the presence of upper idler modes, the presence of quantum and thermal noise, the generation of squeezed states, and the preservation of pre-squeezed states during amplification. Our analysis uses momentum operators to describe the spatial evolution of quantised modes along a TWPA. We calculate the restriction placed on pump amplitude as well as amplifier gain as a result of impedance mismatch between a TWPA and its external system. We apply our analysis to upper idler modes and demonstrate that they will result in suppressed gain. We show that an ideal TWPA is indeed quantum-limited - i.e. it introduces a half-quantum of zero-point fluctuation which is the minimum possible noise contribution for a phase-preserving linear amplifier. We analyse the thermal noise associated with a TWPA by considering the effect of distributed sources along an amplifier transmission line. Our analysis predicts a doubling of thermal noise in the high gain limit as a result of wave-mixing between signal and idler modes. We study the operation of a TWPA in the presence of a DC bias current, and have shown that highly squeezed states can in principle be generated. However, amplifying a pre-squeezed state using a non-degenerate TWPA generally reduces the squeezing advantage.
We study theoretically how loss impacts the amplification and squeezing performance of a generic quantum travelling wave parametric amplifier. Unlike previous studies, we analyze how having different levels of loss at signal and idler frequencies can
We have developed a coupled-mode analysis framework for superconducting travelling-wave parametric amplifiers using the full Telegraphers equations to incorporate loss-related behaviour. Our model provides an explanation of previous experimental obse
Superconducting parametric amplifiers have great promise for quantum-limited readout of superconducting qubits and detectors. Until recently, most superconducting parametric amplifiers had been based on resonant structures, limiting their bandwidth a
It is now well-established that photonic systems can exhibit topological energy bands; similar to their electronic counterparts, this leads to the formation of chiral edge modes which can be used to transmit light in a manner that is protected agains
The ability to amplify optical signals is of pivotal importance across science and technology. The development of optical amplifiers has revolutionized optical communications, which are today pervasively used in virtually all sensing and communicatio