ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum analysis of second-order effects in superconducting travelling-wave parametric amplifiers

126   0   0.0 ( 0 )
 نشر من قبل Songyuan Zhao
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed a quantum mechanical analysis of travelling-wave parametric amplifiers (TWPAs) in order to investigate five experimental phenomena related to their operations, namely the effect of impedance mismatch, the presence of upper idler modes, the presence of quantum and thermal noise, the generation of squeezed states, and the preservation of pre-squeezed states during amplification. Our analysis uses momentum operators to describe the spatial evolution of quantised modes along a TWPA. We calculate the restriction placed on pump amplitude as well as amplifier gain as a result of impedance mismatch between a TWPA and its external system. We apply our analysis to upper idler modes and demonstrate that they will result in suppressed gain. We show that an ideal TWPA is indeed quantum-limited - i.e. it introduces a half-quantum of zero-point fluctuation which is the minimum possible noise contribution for a phase-preserving linear amplifier. We analyse the thermal noise associated with a TWPA by considering the effect of distributed sources along an amplifier transmission line. Our analysis predicts a doubling of thermal noise in the high gain limit as a result of wave-mixing between signal and idler modes. We study the operation of a TWPA in the presence of a DC bias current, and have shown that highly squeezed states can in principle be generated. However, amplifying a pre-squeezed state using a non-degenerate TWPA generally reduces the squeezing advantage.



قيم البحث

اقرأ أيضاً

74 - M. Houde , L. C. G. Govia , 2018
We study theoretically how loss impacts the amplification and squeezing performance of a generic quantum travelling wave parametric amplifier. Unlike previous studies, we analyze how having different levels of loss at signal and idler frequencies can dramatically alter properties compared to the case of frequency-independent loss. We find that loss asymmetries increase the amplifiers added noise in comparison to the symmetric loss case. More surprisingly, even small levels of loss asymmetry can completely destroy any quantum squeezing of symmetric collective output quadratures, while nonetheless leaving the output state strongly entangled.
We have developed a coupled-mode analysis framework for superconducting travelling-wave parametric amplifiers using the full Telegraphers equations to incorporate loss-related behaviour. Our model provides an explanation of previous experimental obse rvations regarding loss in amplifiers, advantages of concatenating amplifiers to achieve high gains, and signal gain saturation. This work can be used to guide the design of amplifiers in terms of the choice of material systems, transmission line geometry, operating conditions, and pump strength.
Superconducting parametric amplifiers have great promise for quantum-limited readout of superconducting qubits and detectors. Until recently, most superconducting parametric amplifiers had been based on resonant structures, limiting their bandwidth a nd dynamic range. Broadband traveling-wave parametric amplifiers based both on the nonlinear kinetic inductance of superconducting thin films and on Josephson junctions are in development. By modifying the dispersion property of the amplifier circuit, referred to as dispersion engineering, the gain can be greatly enhanced and the size can be reduced. We present two theoretical frameworks for analyzing and understanding such parametric amplifiers: (1) generalized coupled-mode equations and (2) a finite difference time domain (FDTD) model combined with a small signal analysis. We show how these analytical and numerical tools may be used to understand device performance.
It is now well-established that photonic systems can exhibit topological energy bands; similar to their electronic counterparts, this leads to the formation of chiral edge modes which can be used to transmit light in a manner that is protected agains t back-scattering. While it is understood how classical signals can propagate under these conditions, it is an outstanding important question how the quantum vacuum fluctuations of the electromagnetic field get modified in the presence of a topological band structure. We address this challenge by exploring a setting where a non-zero topological invariant guarantees the presence of a parametrically-unstable chiral edge mode in a system with boundaries, even though there are no bulk-mode instabilities. We show that one can exploit this to realize a topologically protected, quantum-limited travelling-wave parametric amplifier. The device is naturally protected both against internal losses and back-scattering; the latter feature is in stark contrast to standard travelling wave amplifiers. This adds a new example to the list of potential quantum devices that profit from topological transport.
The ability to amplify optical signals is of pivotal importance across science and technology. The development of optical amplifiers has revolutionized optical communications, which are today pervasively used in virtually all sensing and communicatio n applications of coherent laser sources. In the telecommunication bands, optical amplifiers typically utilize gain media based on III-V semiconductors or rare-earth-doped fibers. Another way to amplify optical signals is to utilize the Kerr nonlinearity of optical fibers or waveguides via parametric processes. Such parametric amplifiers of travelling continuous wave have been originally developed in the microwave domain, and enable quantum-limited signal amplification with high peak gain, broadband gain spectrum tailored via dispersion control, and ability to enable phase sensitive amplification. Despite these advantages, optical amplifiers based on parametric gain have proven impractical in silica fibers due to the low Kerr nonlinearity. Recent advances in photonic integrated circuits have revived interest in parametric amplifiers due to the significantly increased nonlinearity in various integrated platforms. Yet, despite major progress, continuous-wave-pumped parametric amplifiers built on photonic chips have to date remained out of reach. Here we demonstrate a chip-based travelling-wave optical parametric amplifier with net signal gain in the continuous-wave regime. Using ultralow-loss, dispersion-engineered, meter-long, silicon nitride photonic integrated circuits that are tightly coiled on a photonic chip, we achieve a continuous parametric gain of 12 dB that exceeds both the on-chip optical propagation loss and fiber-chip-fiber coupling losses in the optical C-band.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا