ﻻ يوجد ملخص باللغة العربية
The arrival of direct electron detectors (DED) with high frame-rates in the field of scanning transmission electron microscopy has enabled many experimental techniques that require collection of a full diffraction pattern at each scan position, a field which is subsumed under the name four dimensional-scanning transmission electron microscopy (4D-STEM). DED frame rates approaching 100 kHz require data transmission rates and data storage capabilities that exceed commonly available computing infrastructure. Current commercial DEDs allow the user to make compromises in pixel bit depth, detector binning or windowing to reduce the per-frame file size and allow higher frame rates. This change in detector specifications requires decisions to be made before data acquisition that may reduce or lose information that could have been advantageous during data analysis. The 4D Camera, a DED with 87 kHz frame-rate developed at Lawrence Berkeley National Laboratory, reduces the raw data to a linear-index encoded electron event representation (EER). Here we show with experimental data from the 4D Camera that linear-index encoded EER and its direct use in 4D-STEM phase contrast imaging methods enables real-time, interactive phase-contrast from large-area 4D-STEM datasets. We detail the computational complexity advantages of the EER and the necessary computational steps to achieve real-time interactive ptychography and center-of-mass differential phase contrast using commonly available hardware accelerators.
Interface structures in complex oxides remain one of the active areas of condensed matter physics research, largely enabled by recent advances in scanning transmission electron microscopy (STEM). Yet the nature of the STEM contrast in which the struc
Competitive mechanisms contribute to image contrast from dislocations in annular dark field scanning transmission electron microscopy ADF STEM. A clear theoretical understanding of the mechanisms underlying the ADF STEM contrast is therefore essentia
Strain engineering enables the direct modification of the atomic bonding and is currently an active area of research aimed at improving the electrocatalytic activity. However, directly measuring the lattice strain of individual catalyst nanoparticles
Electron tomography is a technique used in both materials science and structural biology to image features well below optical resolution limit. In this work, we present a new algorithm for reconstructing the three-dimensional(3D) electrostatic potent
Within density-functional theory, perturbation theory~(PT) is the state-of-the-art formalism for assessing the response to homogeneous electric fields and the associated material properties, e.g., polarizabilities, dielectric constants, and Raman int