The foundation of the hyperunified field theory I -- fundamental building block and symmetry


الملخص بالإنكليزية

Starting from motional property of functional field based on the action principle of path integral formulation with proposing maximum coherence motion principle and maximum locally entangled-qubits motion principle as guiding principles, we show that such a functional field as fundamental building block appears naturally as an entangled qubit-spinor field expressed by a locally entangled state of qubits. Its motion brings about the appearance of Minkowski spacetime with dimension determined by the motion-correlation $cM_c$-spin charge and the emergence of $cM_c$-spin/hyperspin symmetry as fundamental symmetry. Intrinsic $cQ_c$-spin charge displays a periodic feature as the mod 4 qubit number, which enables us to classify all entangled qubit-spinor fields and spacetime dimensions into four categories with respective to four $cQ_c$-spin charges $cC_{cQ_c}=0,1,2,3$. An entangled decaqubit-spinor field in 19-dimensional hyper-spacetime is found to be a hyperunified qubit-spinor field which unifies all discovered leptons and quarks and brings on the existence of mirror lepton-quark states. The inhomogeneous hyperspin symmetry WS(1,18) as hyperunified symmetry in association with inhomogeneous Lorentz-type symmetry PO(1,18) and global scaling symmetry provides a unified fundamental symmetry. The maximum locally entangled-qubits motion principle is shown to lay the foundation of hyperunified field theory, which enables us to comprehend longstanding questions raised in particle physics and quantum field theory.

تحميل البحث