ترغب بنشر مسار تعليمي؟ اضغط هنا

Sentiment-based Candidate Selection for NMT

70   0   0.0 ( 0 )
 نشر من قبل Alexander Jones
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The explosion of user-generated content (UGC)--e.g. social media posts, comments, and reviews--has motivated the development of NLP applications tailored to these types of informal texts. Prevalent among these applications have been sentiment analysis and machine translation (MT). Grounded in the observation that UGC features highly idiomatic, sentiment-charged language, we propose a decoder-side approach that incorporates automatic sentiment scoring into the MT candidate selection process. We train separate English and Spanish sentiment classifiers, then, using n-best candidates generated by a baseline MT model with beam search, select the candidate that minimizes the absolute difference between the sentiment score of the source sentence and that of the translation, and perform a human evaluation to assess the produced translations. Unlike previous work, we select this minimally divergent translation by considering the sentiment scores of the source sentence and translation on a continuous interval, rather than using e.g. binary classification, allowing for more fine-grained selection of translation candidates. The results of human evaluations show that, in comparison to the open-source MT baseline model on top of which our sentiment-based pipeline is built, our pipeline produces more accurate translations of colloquial, sentiment-heavy source texts.



قيم البحث

اقرأ أيضاً

Recent studies in big data analytics and natural language processing develop automatic techniques in analyzing sentiment in the social media information. In addition, the growing user base of social media and the high volume of posts also provide val uable sentiment information to predict the price fluctuation of the cryptocurrency. This research is directed to predicting the volatile price movement of cryptocurrency by analyzing the sentiment in social media and finding the correlation between them. While previous work has been developed to analyze sentiment in English social media posts, we propose a method to identify the sentiment of the Chinese social media posts from the most popular Chinese social media platform Sina-Weibo. We develop the pipeline to capture Weibo posts, describe the creation of the crypto-specific sentiment dictionary, and propose a long short-term memory (LSTM) based recurrent neural network along with the historical cryptocurrency price movement to predict the price trend for future time frames. The conducted experiments demonstrate the proposed approach outperforms the state of the art auto regressive based model by 18.5% in precision and 15.4% in recall.
Recent neural-based aspect-based sentiment analysis approaches, though achieving promising improvement on benchmark datasets, have reported suffering from poor robustness when encountering confounder such as non-target aspects. In this paper, we take a causal view to addressing this issue. We propose a simple yet effective method, namely, Sentiment Adjustment (SENTA), by applying a backdoor adjustment to disentangle those confounding factors. Experimental results on the Aspect Robustness Test Set (ARTS) dataset demonstrate that our approach improves the performance while maintaining accuracy in the original test set.
Existing works for aspect-based sentiment analysis (ABSA) have adopted a unified approach, which allows the interactive relations among subtasks. However, we observe that these methods tend to predict polarities based on the literal meaning of aspect and opinion terms and mainly consider relations implicitly among subtasks at the word level. In addition, identifying multiple aspect-opinion pairs with their polarities is much more challenging. Therefore, a comprehensive understanding of contextual information w.r.t. the aspect and opinion are further required in ABSA. In this paper, we propose Deep Contextualized Relation-Aware Network (DCRAN), which allows interactive relations among subtasks with deep contextual information based on two modules (i.e., Aspect and Opinion Propagation and Explicit Self-Supervised Strategies). Especially, we design novel self-supervised strategies for ABSA, which have strengths in dealing with multiple aspects. Experimental results show that DCRAN significantly outperforms previous state-of-the-art methods by large margins on three widely used benchmarks.
In aspect-based sentiment analysis, extracting aspect terms along with the opinions being expressed from user-generated content is one of the most important subtasks. Previous studies have shown that exploiting connections between aspect and opinion terms is promising for this task. In this paper, we propose a novel joint model that integrates recursive neural networks and conditional random fields into a unified framework for explicit aspect and opinion terms co-extraction. The proposed model learns high-level discriminative features and double propagate information between aspect and opinion terms, simultaneously. Moreover, it is flexible to incorporate hand-crafted features into the proposed model to further boost its information extraction performance. Experimental results on the SemEval Challenge 2014 dataset show the superiority of our proposed model over several baseline methods as well as the winning systems of the challenge.
Sentiment tasks such as hate speech detection and sentiment analysis, especially when performed on languages other than English, are often low-resource. In this study, we exploit the emotional information encoded in emojis to enhance the performance on a variety of sentiment tasks. This is done using a transfer learning approach, where the parameters learned by an emoji-based source task are transferred to a sentiment target task. We analyse the efficacy of the transfer under three conditions, i.e. i) the emoji content and ii) label distribution of the target task as well as iii) the difference between monolingually and multilingually learned source tasks. We find i.a. that the transfer is most beneficial if the target task is balanced with high emoji content. Monolingually learned source tasks have the benefit of taking into account the culturally specific use of emojis and gain up to F1 +0.280 over the baseline.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا