ﻻ يوجد ملخص باللغة العربية
In the presence of strong heterogeneities, it is well known that the use of explicit schemes for the transport of species in a porous medium suffers from severe restrictions on the time step. This has led to the development of implicit schemes that are increasingly favoured by practitioners for their computational efficiency. The transport equation requires knowledge of the velocity field, which results from an elliptic problem (Darcy problem) that is the most expensive part of the computation. When considering large reservoirs, a cost-effective way of approximating the Darcy problems is using multiscale domain decomposition (MDD) methods. They allow for the pressure and velocity fields to be computed on coarse meshes (large scale), while detailed basis functions are defined locally, usually in parallel, in a much finer grid (small scale). In this work we adopt the Multiscale Robin Coupled Method (MRCM, [Guiraldello, et al., J. Comput. Phys., 355 (2018) pp. 1-21], [Rocha, et al., J. Comput. Phys., (2020) 109316]), which is a generalization of previous MDD methods that allows for great flexibility in the choice of interface spaces. In this article we investigate the combination of the MRCM with implicit transport schemes. A sequentially implicit strategy is proposed, with different trust-region algorithms ensuring the convergence of the transport solver. The method is assessed on several very stringent 2D two-phase problems, demonstrating its stability even for large time steps. It is also shown that the best accuracy is achieved by considering recently introduced non-polynomial interface spaces, since polynomial spaces are not optimal for high-contrast channelized permeability fields.
In this work we formulate and test a new procedure, the Multiscale Perturbation Method for Two-Phase Flows (MPM-2P), for the fast, accurate and naturally parallelizable numerical solution of two-phase, incompressible, immiscible displacement in porou
We present a wavelet-based adaptive method for computing 3D multiscale flows in complex, time-dependent geometries, implemented on massively parallel computers. While our focus is on simulations of flapping insects, it can be used for other flow prob
We introduce a class of high order accurate, semi-implicit Runge-Kutta schemes in the general setting of evolution equations that arise as gradient flow for a cost function, possibly with respect to an inner product that depends on the solution, and
In this paper, we present an efficient numerical algorithm for solving the time-dependent Cahn--Hilliard--Navier--Stokes equations that model the flow of two phases with different densities. The pressure-correction step in the projection method consi
Splitting is a method to handle application problems by splitting physics, scales, domain, and so on. Many splitting algorithms have been designed for efficient temporal discretization. In this paper, our goal is to use temporal splitting concepts in