ﻻ يوجد ملخص باللغة العربية
The effective medium representation is fundamental in providing a performance-to-design approach for many devices based on metamaterials. While there are recent works in extending the effective medium concept into the temporal domain, a direct implementation is still missing. Here, we construct an acoustic metamaterial dynamically switching between two different configurations with a time-varying convolution kernel, which can now incorporate both frequency dispersion of metamaterials and temporal modulation. We establish the effective medium formula in temporally averaging the compressibilities, densities and even Willis coupling parameters of the two configurations. A phase disorder between the modulation of different atoms is found negligible on the effective medium. Our realization enables a high-level description of metamaterials in the spatiotemporal domain, making many recent proposals, such as magnet-free non-reciprocity, broadband slow-light and Fresnel drag using spatiotemporal metamaterials possible for implementations in future.
By designing tailor-made resonance modes with structured atoms, metamaterials allow us to obtain constitutive parameters outside their limited range from natural or composite materials. Nonetheless, tuning the constitutive parameters relies much on o
Using both multiple scattering theory and effective medium theory, we find that an acoustic metamaterial consisting of an array of spinning cylinders can possess a host of unusual properties including folded bulk and interface-state bands in the subw
The recently proposed concept of metamaterials has opened exciting venues to control wave-matter interaction in unprecedented ways. Here we demonstrate the relevance of metamaterials for inducing acoustic birefringence, a phenomenon which has already
Acoustic bianisotropy, also known as the Willis parameter, expands the field of acoustics by providing nonconventional couplings between momentum and strain in constitutive relations. Sharing the common ground with electromagnetics, the realization o
The recent breakthrough in metamaterial-based optical computing devices [Science 343, 160 (2014)] has inspired a quest for similar systems in acoustics, performing mathematical operations on sound waves. So far, acoustic analog computing has been dem