ترغب بنشر مسار تعليمي؟ اضغط هنا

ORBIT: A Real-World Few-Shot Dataset for Teachable Object Recognition

198   0   0.0 ( 0 )
 نشر من قبل Daniela Massiceti
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Object recognition has made great advances in the last decade, but predominately still relies on many high-quality training examples per object category. In contrast, learning new objects from only a few examples could enable many impactful applications from robotics to user personalization. Most few-shot learning research, however, has been driven by benchmark datasets that lack the high variation that these applications will face when deployed in the real-world. To close this gap, we present the ORBIT dataset and benchmark, grounded in the real-world application of teachable object recognizers for people who are blind/low-vision. The dataset contains 3,822 videos of 486 objects recorded by people who are blind/low-vision on their mobile phones. The benchmark reflects a realistic, highly challenging recognition problem, providing a rich playground to drive research in robustness to few-shot, high-variation conditions. We set the benchmarks first state-of-the-art and show there is massive scope for further innovation, holding the potential to impact a broad range of real-world vision applications including tools for the blind/low-vision community. We release the dataset at https://doi.org/10.25383/city.14294597 and benchmark code at https://github.com/microsoft/ORBIT-Dataset.



قيم البحث

اقرأ أيضاً

As autonomous decision-making agents move from narrow operating environments to unstructured worlds, learning systems must move from a closed-world formulation to an open-world and few-shot setting in which agents continuously learn new classes from small amounts of information. This stands in stark contrast to modern machine learning systems that are typically designed with a known set of classes and a large number of examples for each class. In this work we extend embedding-based few-shot learning algorithms to the open-world recognition setting. We combine Bayesian non-parametric class priors with an embedding-based pre-training scheme to yield a highly flexible framework which we refer to as few-shot learning for open world recognition (FLOWR). We benchmark our framework on open-world extensions of the common MiniImageNet and TieredImageNet few-shot learning datasets. Our results show, compared to prior methods, strong classification accuracy performance and up to a 12% improvement in H-measure (a measure of novel class detection) from our non-parametric open-world few-shot learning scheme.
The goal of few-shot image recognition (FSIR) is to identify novel categories with a small number of annotated samples by exploiting transferable knowledge from training data (base categories). Most current studies assume that the transferable knowle dge can be well used to identify novel categories. However, such transferable capability may be impacted by the dataset bias, and this problem has rarely been investigated before. Besides, most of few-shot learning methods are biased to different datasets, which is also an important issue that needs to be investigated deeply. In this paper, we first investigate the impact of transferable capabilities learned from base categories. Specifically, we use the relevance to measure relationships between base categories and novel categories. Distributions of base categories are depicted via the instance density and category diversity. The FSIR model learns better transferable knowledge from relevant training data. In the relevant data, dense instances or diverse categories can further enrich the learned knowledge. Experimental results on different sub-datasets of ImagNet demonstrate category relevance, instance density and category diversity can depict transferable bias from base categories. Second, we investigate performance differences on different datasets from dataset structures and different few-shot learning methods. Specifically, we introduce image complexity, intra-concept visual consistency, and inter-concept visual similarity to quantify characteristics of dataset structures. We use these quantitative characteristics and four few-shot learning methods to analyze performance differences on five different datasets. Based on the experimental analysis, some insightful observations are obtained from the perspective of both dataset structures and few-shot learning methods. We hope these observations are useful to guide future FSIR research.
Recently, considerable literature has grown up around the theme of few-shot named entity recognition (NER), but little published benchmark data specifically focused on the practical and challenging task. Current approaches collect existing supervised NER datasets and re-organize them to the few-shot setting for empirical study. These strategies conventionally aim to recognize coarse-grained entity types with few examples, while in practice, most unseen entity types are fine-grained. In this paper, we present Few-NERD, a large-scale human-annotated few-shot NER dataset with a hierarchy of 8 coarse-grained and 66 fine-grained entity types. Few-NERD consists of 188,238 sentences from Wikipedia, 4,601,160 words are included and each is annotated as context or a part of a two-level entity type. To the best of our knowledge, this is the first few-shot NER dataset and the largest human-crafted NER dataset. We construct benchmark tasks with different emphases to comprehensively assess the generalization capability of models. Extensive empirical results and analysis show that Few-NERD is challenging and the problem requires further research. We make Few-NERD public at https://ningding97.github.io/fewnerd/.
With the tremendous advances of Convolutional Neural Networks (ConvNets) on object recognition, we can now obtain reliable enough machine-labeled annotations easily by predictions from off-the-shelf ConvNets. In this work, we present an abstraction m emory based framework for few-shot learning, building upon machine-labeled image annotations. Our method takes some large-scale machine-annotated datasets (e.g., OpenImages) as an external memory bank. In the external memory bank, the information is stored in the memory slots with the form of key-value, where image feature is regarded as key and label embedding serves as value. When queried by the few-shot examples, our model selects visually similar data from the external memory bank, and writes the useful information obtained from related external data into another memory bank, i.e., abstraction memory. Long Short-Term Memory (LSTM) controllers and attention mechanisms are utilized to guarantee the data written to the abstraction memory is correlated to the query example. The abstraction memory concentrates information from the external memory bank, so that it makes the few-shot recognition effective. In the experiments, we firstly confirm that our model can learn to conduct few-shot object recognition on clean human-labeled data from ImageNet dataset. Then, we demonstrate that with our model, machine-labeled image annotations are very effective and abundant resources to perform object recognition on novel categories. Experimental results show that our proposed model with machine-labeled annotations achieves great performance, only with a gap of 1% between of the one with human-labeled annotations.
One of the key limitations of modern deep learning approaches lies in the amount of data required to train them. Humans, by contrast, can learn to recognize novel categories from just a few examples. Instrumental to this rapid learning ability is the compositional structure of concept representations in the human brain --- something that deep learning models are lacking. In this work, we make a step towards bridging this gap between human and machine learning by introducing a simple regularization technique that allows the learned representation to be decomposable into parts. Our method uses category-level attribute annotations to disentangle the feature space of a network into subspaces corresponding to the attributes. These attributes can be either purely visual, like object parts, or more abstract, like openness and symmetry. We demonstrate the value of compositional representations on three datasets: CUB-200-2011, SUN397, and ImageNet, and show that they require fewer examples to learn classifiers for novel categories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا