ﻻ يوجد ملخص باللغة العربية
We investigate how physical quantities associated with relativistic stars in the Jordan and Einstein frames are related by the generalized disformal transformations constructed by the scalar and vector fields within the slow-rotation approximation. We consider the most general scalar disformal transformation constructed by the scalar field, and by the vector field without and with the $U(1)$ gauge symmetry, respectively. At the zeroth order of the slow-rotation approximation, by imposing that both the metrics of the Jordan and Einstein frames are asymptotically flat, we show that the Arnowitt-Deser-Misner mass is frame invariant. At the first order of the slow-rotation approximation, we discuss the disformal transformations of the frame-dragging function, angular velocity, angular momentum, and moment of inertia of the star. We show that the angular velocity of the star is frame invariant in all the cases. While the angular momentum and moment of inertia are invariant under the scalar disformal transformation, they are not under the vector disformal transformation without and with the $U(1)$ gauge symmetry.
We study thermodynamics in $f(R)$ gravity with the disformal transformation. The transformation applied to the matter Lagrangian has the form of $g_{m } = A(phi,X)g_{m } + B(phi,X)pa_mfpa_ f$ with the assumption of the Minkowski matter metric $g_{m }
Primordial cosmological perturbations are the seeds that were cultivated by inflation and the succeeding dynamical processes, eventually leading to the current Universe. In this work, we investigate the behavior of the gauge-invariant scalar and tens
The extended scalar-tensor and vector-tensor theories admit black hole solutions with the nontrivial profiles of the scalar and vector fields, respectively. The disformal transformation maps a solution in a class of the scalar-tensor or vector-tensor
We study the stability of relativistic stars in scalar-tensor theories with a nonminimal coupling of the form $F(phi)R$, where $F$ depends on a scalar field $phi$ and $R$ is the Ricci scalar. On a spherically symmetric and static background, we incor
We study the frame dependence/independence of cosmological observables under disformal transformations, extending the previous results regarding conformal transformations, and provide the correspondence between Jordan-frame and Einstein-frame variabl