The $p$-elastic flow for planar closed curves with constant parametrization


الملخص بالإنكليزية

In this paper, we consider the $L^2$-gradient flow for the modified $p$-elastic energy defined on planar closed curves. We formulate a notion of weak solution for the flow and prove the existence of global-in-time weak solutions with $p ge 2$ for initial curves in the energy space via minimizing movements. Moreover, we prove the existence of unique global-in-time solutions to the flow with $p=2$ and obtain their subconvergence to an elastica as $t to infty$.

تحميل البحث