ﻻ يوجد ملخص باللغة العربية
This paper reviews improved calibration methods for the Lunar Reconnaissance Orbiter Lunar Exploration Neutron Detector. We cross calibrated the set of LEND observations and models of its detectors physical geometry and composition against the McKinney Apollo 17 era measured neutron flux, Lunar Prospector Neutron Spectrometer epithermal neutron observations, Earth based Galactic Cosmic Ray observations and altitude dependent models of the Moon neutron emission flux. Our neutron transport modeling of the LEND system with the Geant4 software package allows us to fully decompose the varying contributions of lunar, spacecraft and instrument dependent sources of neutrons and charged particles during the LEND mission. With this improved calibration, we can now fully predict every observation from the eight helium 3 detectors and the expected total and partial count rates of neutrons and charged particles for the entirety of LEND now ten plus year observation campaign at the Moon. The study has resulted in an improved calibration for all detectors. The high spatial resolution of LEND collimated and uncollimated sensors are illustrated using the neutron suppression region associated with the south polar Cabeus permanent shadowed region.
From modeling the evolution of disks of planetesimals under the influence of planets, it has been shown that the mass of water delivered to the Earth from beyond Jupiters orbit could be comparable to the mass of terrestrial oceans. A considerable por
The Lunar Ultraviolet Cosmic Imager (LUCI) is a near-ultraviolet (NUV) telescope with all-spherical mirrors, designed and built to fly as a scientific payload on a lunar mission with Team Indus - the original Indian entry to the Google Lunar X-Prize.
The Lunar Cherenkov technique is a promising method for UHE neutrino and cosmic ray detection which aims to detect nanosecond radio pulses produced during particle interactions in the Lunar regolith. For low frequency experiments, such as NuMoon, the
Understanding the origin and evolution of the lunar volatile system is not only compelling lunar science, but also fundamental Solar System science. This white paper (submitted to the US National Academies Decadal Survey in Planetary Science and Astr
The lunar farside highlands problem refers to the curious and unexplained fact that the farside lunar crust is thicker, on average, than the nearside crust. Here we recognize the crucial influence of Earthshine, and propose that it naturally explains