ترغب بنشر مسار تعليمي؟ اضغط هنا

Functional L-Optimality Subsampling for Massive Data

255   0   0.0 ( 0 )
 نشر من قبل Jiguo Cao
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Massive data bring the big challenges of memory and computation for analysis. These challenges can be tackled by taking subsamples from the full data as a surrogate. For functional data, it is common to collect multiple measurements over their domains, which require even more memory and computation time when the sample size is large. The computation would be much more intensive when statistical inference is required through bootstrap samples. To the best of our knowledge, this article is the first attempt to study the subsampling method for the functional linear model. We propose an optimal subsampling method based on the functional L-optimality criterion. When the response is a discrete or categorical variable, we further extend our proposed functional L-optimality subsampling (FLoS) method to the functional generalized linear model. We establish the asymptotic properties of the estimators by the FLoS method. The finite sample performance of our proposed FLoS method is investigated by extensive simulation studies. The FLoS method is further demonstrated by analyzing two large-scale datasets: the global climate data and the kidney transplant data. The analysis results on these data show that the FLoS method is much better than the uniform subsampling approach and can well approximate the results based on the full data while dramatically reducing the computation time and memory.



قيم البحث

اقرأ أيضاً

61 - M. Tsagris , A. Alenazi , 2020
The vast availability of large scale, massive and big data has increased the computational cost of data analysis. One such case is the computational cost of the univariate filtering which typically involves fitting many univariate regression models a nd is essential for numerous variable selection algorithms to reduce the number of predictor variables. The paper manifests how to dramatically reduce that computational cost by employing the score test or the simple Pearson correlation (or the t-test for binary responses). Extensive Monte Carlo simulation studies will demonstrate their advantages and disadvantages compared to the likelihood ratio test and examples with real data will illustrate the performance of the score test and the log-likelihood ratio test under realistic scenarios. Depending on the regression model used, the score test is 30 - 60,000 times faster than the log-likelihood ratio test and produces nearly the same results. Hence this paper strongly recommends to substitute the log-likelihood ratio test with the score test when coping with large scale data, massive data, big data, or even with data whose sample size is in the order of a few tens of thousands or higher.
Nonuniform subsampling methods are effective to reduce computational burden and maintain estimation efficiency for massive data. Existing methods mostly focus on subsampling with replacement due to its high computational efficiency. If the data volum e is so large that nonuniform subsampling probabilities cannot be calculated all at once, then subsampling with replacement is infeasible to implement. This paper solves this problem using Poisson subsampling. We first derive optimal Poisson subsampling probabilities in the context of quasi-likelihood estimation under the A- and L-optimality criteria. For a practically implementable algorithm with approximated optimal subsampling probabilities, we establish the consistency and asymptotic normality of the resultant estimators. To deal with the situation that the full data are stored in different blocks or at multiple locations, we develop a distributed subsampling framework, in which statistics are computed simultaneously on smaller partitions of the full data. Asymptotic properties of the resultant aggregated estimator are investigated. We illustrate and evaluate the proposed strategies through numerical experiments on simulated and real data sets.
Spatio-temporal data sets are rapidly growing in size. For example, environmental variables are measured with ever-higher resolution by increasing numbers of automated sensors mounted on satellites and aircraft. Using such data, which are typically n oisy and incomplete, the goal is to obtain complete maps of the spatio-temporal process, together with proper uncertainty quantification. We focus here on real-time filtering inference in linear Gaussian state-space models. At each time point, the state is a spatial field evaluated on a very large spatial grid, making exact inference using the Kalman filter computationally infeasible. Instead, we propose a multi-resolution filter (MRF), a highly scalable and fully probabilistic filtering method that resolves spatial features at all scales. We prove that the MRF matrices exhibit a particular block-sparse multi-resolution structure that is preserved under filtering operations through time. We also discuss inference on time-varying parameters using an approximate Rao-Blackwellized particle filter, in which the integrated likelihood is computed using the MRF. We compare the MRF to existing approaches in a simulation study and a real satellite-data application.
To fast approximate maximum likelihood estimators with massive data, this paper studies the Optimal Subsampling Method under the A-optimality Criterion (OSMAC) for generalized linear models. The consistency and asymptotic normality of the estimator f rom a general subsampling algorithm are established, and optimal subsampling probabilities under the A- and L-optimality criteria are derived. Furthermore, using Frobenius norm matrix concentration inequalities, finite sample properties of the subsample estimator based on optimal subsampling probabilities are also derived. Since the optimal subsampling probabilities depend on the full data estimate, an adaptive two-step algorithm is developed. Asymptotic normality and optimality of the estimator from this adaptive algorithm are established. The proposed methods are illustrated and evaluated through numerical experiments on simulated and real datasets.
156 - Matthias Katzfuss 2015
Automated sensing instruments on satellites and aircraft have enabled the collection of massive amounts of high-resolution observations of spatial fields over large spatial regions. If these datasets can be efficiently exploited, they can provide new insights on a wide variety of issues. However, traditional spatial-statistical techniques such as kriging are not computationally feasible for big datasets. We propose a multi-resolution approximation (M-RA) of Gaussian processes observed at irregular locations in space. The M-RA process is specified as a linear combination of basis functions at multiple levels of spatial resolution, which can capture spatial structure from very fine to very large scales. The basis functions are automatically chosen to approximate a given covariance function, which can be nonstationary. All computations involving the M-RA, including parameter inference and prediction, are highly scalable for massive datasets. Crucially, the inference algorithms can also be parallelized to take full advantage of large distributed-memory computing environments. In comparisons using simulated data and a large satellite dataset, the M-RA outperforms a related state-of-the-art method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا