ﻻ يوجد ملخص باللغة العربية
What is habitability? Can we quantify it? What do we mean under the term habitable or potentially habitable planet? With estimates of the number of planets in our Galaxy alone running into billions, possibly a number greater than the number of stars, it is high time to start characterizing them, sorting them into classes/types just like stars, to better understand their formation paths, their properties and, ultimately, their ability to beget or sustain life. After all, we do have life thriving on one of these billions of planets, why not on others? Which planets are better suited for life and which ones are definitely not worth spending expensive telescope time on? We need to find sort of quick assessment score, a metric, using which we can make a list of promising planets and dedicate our efforts to them. Exoplanetary habitability is a transdisciplinary subject integrating astrophysics, astrobiology, planetary science, even terrestrial environmental sciences. We review the existing metrics of habitability and the new classification schemes of extrasolar planets and provide an exposition of the use of computational intelligence techniques to evaluate habitability scores and to automate the process of classification of exoplanets. We examine how solving convex optimization techniques, as in computing new metrics such as CDHS and CEESA, cross-validates ML-based classification of exoplanets. Despite the recent criticism of exoplanetary habitability ranking, this field has to continue and evolve to use all available machinery of astroinformatics, artificial intelligence and machine learning. It might actually develop into a sort of same scale as stellar types in astronomy, to be used as a quick tool of screening exoplanets in important characteristics in search for potentially habitable planets for detailed follow-up targets.
Exoplanet science is one of the most thriving fields of modern astrophysics. A major goal is the atmospheric characterization of dozens of small, terrestrial exoplanets in order to search for signatures in their atmospheres that indicate biological a
Characterizing habitable exoplanets and/or their moons is of paramount importance. Here we show the results of our magnetic field topological modeling which demonstrate that terrestrial exoplanet-exomoon coupled magnetospheres work together to protec
Since 2006 WASP-South has been scanning the Southern sky for transiting exoplanets. Combined with Geneva Observatory radial velocities we have so far found over 30 transiting exoplanets around relatively bright stars of magnitude 9--13. We present a status report for this ongoing survey.
Fluctuations in heart rate are intimately tied to changes in the physiological state of the organism. We examine and exploit this relationship by classifying a human subjects wake/sleep status using his instantaneous heart rate (IHR) series. We use a
The recent discovery of a staggering diversity of planets beyond the Solar System has brought with it a greatly expanded search space for habitable worlds. The Kepler exoplanet survey has revealed that most planets in our interstellar neighborhood ar