ﻻ يوجد ملخص باللغة العربية
Photo-realistic neural reconstruction and rendering of the human portrait are critical for numerous VR/AR applications. Still, existing solutions inherently rely on multi-view capture settings, and the one-shot solution to get rid of the tedious multi-view synchronization and calibration remains extremely challenging. In this paper, we propose MirrorNeRF - a one-shot neural portrait free-viewpoint rendering approach using a catadioptric imaging system with multiple sphere mirrors and a single high-resolution digital camera, which is the first to combine neural radiance field with catadioptric imaging so as to enable one-shot photo-realistic human portrait reconstruction and rendering, in a low-cost and casual capture setting. More specifically, we propose a light-weight catadioptric system design with a sphere mirror array to enable diverse ray sampling in the continuous 3D space as well as an effective online calibration for the camera and the mirror array. Our catadioptric imaging system can be easily deployed with a low budget and the casual capture ability for convenient daily usages. We introduce a novel neural warping radiance field representation to learn a continuous displacement field that implicitly compensates for the misalignment due to our flexible system setting. We further propose a density regularization scheme to leverage the inherent geometry information from the catadioptric data in a self-supervision manner, which not only improves the training efficiency but also provides more effective density supervision for higher rendering quality. Extensive experiments demonstrate the effectiveness and robustness of our scheme to achieve one-shot photo-realistic and high-quality appearance free-viewpoint rendering for human portrait scenes.
We present a method for estimating Neural Radiance Fields (NeRF) from a single headshot portrait. While NeRF has demonstrated high-quality view synthesis, it requires multiple images of static scenes and thus impractical for casual captures and movin
We present a deep learning-based framework for portrait reenactment from a single picture of a target (one-shot) and a video of a driving subject. Existing facial reenactment methods suffer from identity mismatch and produce inconsistent identities w
We propose pixelNeRF, a learning framework that predicts a continuous neural scene representation conditioned on one or few input images. The existing approach for constructing neural radiance fields involves optimizing the representation to every sc
We present MVSNeRF, a novel neural rendering approach that can efficiently reconstruct neural radiance fields for view synthesis. Unlike prior works on neural radiance fields that consider per-scene optimization on densely captured images, we propose
We introduce GNeRF, a framework to marry Generative Adversarial Networks (GAN) with Neural Radiance Field (NeRF) reconstruction for the complex scenarios with unknown and even randomly initialized camera poses. Recent NeRF-based advances have gained