ﻻ يوجد ملخص باللغة العربية
One-dimensional (1D) materials have attracted significant research interest due to their unique quantum confinement effects and edge-related properties. Atomically thin 1D nanoribbon is particularly interesting because it is a valuable platform with physical limits of both thickness and width. Here, we develop a catalyst-free growth method and achieves the growth of Bi2O2Se nanostructures with tunable dimensionality. Significantly, Bi2O2Se nanoribbons with thickness down to 0.65 nm, corresponding to monolayer, are successfully grown for the first time. Electrical and optoelectronic measurements show that Bi2O2Se nanoribbons possess decent performance in terms of mobility, on/off ratio, and photoresponsivity, suggesting their promising for devices. This work not only reports a new method for the growth of atomically thin nanoribbons but also provides a platform to study properties and applications of such nanoribbon materials at thickness limit.
Methylammonium lead iodide perovskite has attracted intensive interest for its diverse optoelectronic applications. However, most studies to date have been limited to bulk thin films that are difficult to implement for integrated device arrays becaus
Contributing to the need of new graphene nanoribbon (GNR) structures that can be synthesized with atomic precision, we have designed a reactant that renders chiral (3,1) - GNRs after a multi-step reaction including Ullmann coupling and cyclodehydroge
Recently, hexagonal boron nitride (h-BN) has been shown to act as an ideal substrate to graphene by greatly improving the material transport properties thanks to its atomically flat surface, low interlayer electronic coupling and almost perfect retic
Diodes made of heterostructures of the 2D material graphene and conventional 3D materials are reviewed in this manuscript. Several applications in high frequency electronics and optoelectronics are highlighted. In particular, advantages of metal-insu
Aurivillius ferroelectric $Bi_2WO_6$ (BWO) encompasses a broad range of functionalities, including robust fatigue-free ferroelectricity, high photocatalytic activity, and ionic conductivity. Despite these promising characteristics, an in-depth study