ترغب بنشر مسار تعليمي؟ اضغط هنا

Survival times of supramassive neutron stars resulting from binary neutron star mergers

103   0   0.0 ( 0 )
 نشر من قبل Paz Beniamini Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A binary neutron star (BNS) merger can lead to various outcomes, from indefinitely stable neutron stars, through supramassive (SMNS) or hypermassive (HMNS) neutron stars supported only temporarily against gravity, to black holes formed promptly after the merger. Up-to-date constraints on the BNS total mass and the neutron star equation of state suggest that a long-lived SMNS may form in $sim 0.45-0.9$ of BNS mergers. A maximally rotating SMNS needs to lose $sim 3-6times 10^{52}$ erg of its rotational energy before it collapses, on a fraction of the spin-down timescale. A SMNS formation imprints on the electromagnetic counterparts to the BNS merger. However, a comparison with observations reveals tensions. First, the distribution of collapse times is too wide and that of released energies too narrow (and the energy itself too large) to explain the observed distributions of internal X-ray plateaus, invoked as evidence for SMNS-powered energy injection. Secondly, the immense energy injection into the blastwave should lead to extremely bright radio transients which previous studies found to be inconsistent with deep radio observations of short gamma-ray bursts. Furthermore, we show that upcoming all-sky radio surveys will constrain the extracted energy distribution, independently of a GRB jet formation. Our results can be self-consistently understood, provided that most BNS merger remnants collapse shortly after formation (even if their masses are low enough to allow for SMNS formation). This naturally occurs if the remnant retains half or less of its initial energy by the time it enters solid body rotation.



قيم البحث

اقرأ أيضاً

Following merger, a neutron star (NS) binary can produce roughly one of three different outcomes: (1) a stable NS, (2) a black hole (BH), or (3) a supra-massive, rotationally-supported NS, which then collapses to a BH following angular momentum losse s. Which of these fates occur and in what proportion has important implications for the electromagnetic transient associated with the mergers and the expected gravitational wave signatures, which in turn depend on the high density equation of state (EOS). Here we combine relativistic calculations of NS masses using realistic EOSs with Monte Carlo population synthesis based on the mass distribution of NS binaries in our Galaxy to predict the distribution of fates expected. For many EOSs, a significant fraction of the remnants are NSs or supra-massive NSs. This lends support to scenarios where a quickly spinning, highly magnetized NS may be powering an electromagnetic transient. This also indicates that it will be important for future gravitational wave (GW) observatories to focus on high frequencies to study the post merger GW emission. Even in cases where individual GW events are too low in signal to noise to study the post merger signature in detail, the statistics of how many mergers produce NSs versus BHs can be compared with our work to constrain the EOS. To match short gamma-ray burst (SGRB) X-ray afterglow statistics, we find that the stiffest EOSs are ruled out. Furthermore, many popular EOSs require ~60-70% of SGRBs to be from NS-BH mergers rather than just binary NSs.
204 - Tomonori Totani 2013
Fast radio bursts (FRBs) at cosmological distances have recently been discovered, whose duration is about milliseconds. We argue that the observed short duration is difficult to explain by giant flares of soft gamma-ray repeaters, though their event rate and energetics are consistent with FRBs. Here we discuss binary neutron star (NS-NS) mergers as a possible origin of FRBs. The FRB rate is within the plausible range of NS-NS merger rate and its cosmological evolution, while a large fraction of NS-NS mergers must produce observable FRBs. A likely radiation mechanism is coherent radio emission like radio pulsars, by magnetic braking when magnetic fields of neutron stars are synchronized to binary rotation at the time of coalescence. Magnetic fields of the standard strength (~ 10^{12-13} G) can explain the observed FRB fluxes, if the conversion efficiency from magnetic braking energy loss to radio emission is similar to that of isolated radio pulsars. Corresponding gamma-ray emission is difficult to detect by current or past gamma-ray burst satellites. Since FRBs tell us the exact time of mergers, a correlated search would significantly improve the effective sensitivity of gravitational wave detectors.
We study high-energy emission from the mergers of neutron star binaries as electromagnetic counterparts to gravitational waves aside from short gamma-ray bursts. The mergers entail significant mass ejection, which interacts with the surrounding mediu m to produce similar but brighter remnants than supernova remnants in a few years. We show that electrons accelerated in the remnants can produce synchrotron radiation in X-rays detectable at $sim 100$ Mpc by current generation telescopes and inverse Compton emission in gamma rays detectable by the emph{Fermi} Large Area Telescopes and the Cherenkov Telescope Array under favorable conditions. The remnants may have already appeared in high-energy surveys such as the Monitor of All-sky X-ray Image and the emph{Fermi} Large Area Telescope as unidentified sources. We also suggest that the merger remnants could be the origin of ultra-high-energy cosmic rays beyond the knee energy, $sim 10^{15}$ eV, in the cosmic-ray spectrum.
We show how gravitational-wave observations with advanced detectors of tens to several tens of neutron-star binaries can measure the neutron-star radius with an accuracy of several to a few percent, for mass and spatial distributions that are realist ic, and with none of the sources located within 100 Mpc. We achieve such an accuracy by combining measurements of the total mass from the inspiral phase with those of the compactness from the postmerger oscillation frequencies. For estimating the measurement errors of these frequencies we utilize analytical fits to postmerger numerical-relativity waveforms in the time domain, obtained here for the first time, for four nuclear-physics equations of state and a couple of values for the mass. We further exploit quasi-universal relations to derive errors in compactness from those frequencies. Measuring the average radius to well within 10% is possible for a sample of 100 binaries distributed uniformly in volume between 100 and 300 Mpc, so long as the equation of state is not too soft or the binaries are not too heavy.
The first detection of gravitational waves from a neutron star - neutron star (NS-NS) merger, GW170817, and the increasing number of observations of short gamma-ray bursts (SGRBs) have greatly motivated studies of the origins of NS-NS and neutron sta r - black hole (NS-BH) binaries. We calculate the merger rates of NS-NS and NS-BH binaries from globular clusters (GCs) using realistic GC simulations with the texttt{CMC} cluster catalog. We use a large sample of models with a range of initial numbers of stars, metallicities, virial radii and galactocentric distances, representative of the present-day Milky Way GCs, to quantify the inspiral times and volumetric merger rates as a function of redshift, both inside and ejected from clusters. We find that over the complete lifetime of most GCs, stellar BHs dominate the cluster cores and prevent the mass segregation of NSs, thereby reducing the dynamical interaction rates of NSs so that at most a few NS binary mergers are ever produced. We estimate the merger rate in the local universe to be $simrm{0.02,Gpc^{-3},yr^{-1}}$ for both NS-NS and NS-BH binaries, or a total of $sim 0.04$~Gpc$^{-3}$~yr$^{-1}$ for both populations. These rates are about 5 orders of magnitude below the current empirical merger rate from LIGO/Virgo. We conclude that dynamical interactions in GCs do not play a significant role in enhancing the NS-NS and NS-BH merger rates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا