ﻻ يوجد ملخص باللغة العربية
Two-dimensional (2D) ferromagnetic and ferroelectric materials attract unprecedented attention due to the spontaneous-symmetry-breaking induced novel properties and multifarious potential applications. Here we systematically investigate a large family (148) of 2D MGeX3 (M = metal elements, X = O/S/Se/Te) by means of the high-throughput first-principles calculations, and focus on their possible ferroic properties including ferromagnetism, ferroelectricity, and ferroelasticity. We discover eight stable 2D ferromagnets including five semiconductors and three half-metals, 21 2D antiferromagnets, and 11 stable 2D ferroelectric semiconductors including two multiferroic materials. Particularly, MnGeSe3 and MnGeTe3 are predicted to be room-temperature 2D ferromagnetic half metals with Tc of 490 and 308 K, respectively. It is probably for the first time that ferroelectricity is uncovered in 2D MGeX3 family, which derives from the spontaneous symmetry breaking induced by unexpected displacements of Ge-Ge atomic pairs, and we also reveal that the electric polarizations are in proportion to the ratio of electronegativity of X and M atoms, and IVB group metal elements are highly favored for 2D ferroelectricity. Magnetic tunnel junction and water-splitting photocatalyst based on 2D ferroic MGeX3 are proposed as examples of wide potential applications. The atlas of ferroicity in 2D MGeX3 materials will spur great interest in experimental studies and would lead to diverse applications.
Two-dimensional (2D) multiferroics have been casted great attention owing to their promising prospects for miniaturized electronic and memory devices.Here, we proposed a highly stable 2D multiferroic, VOF monolayer, which is an intrinsic ferromagneti
In the quest for post-CMOS technologies, ferromagnetic skyrmions and their anti-particles have shown great promise as topologically protected solitonic information carriers in memory-in-logic or neuromorphic devices. However, the presence of dipolar
Recently, the observation of atomic thin film SnTe with a Curie temperature (Tc) higher than that of the bulk (Chang et. al., Science 353, 274 (2016)) has boosted the research on two-dimensional (2D) ferroic materials tremendously. However, the origi
Ferroelectricity and metallicity are usually believed not to coexist because conducting electrons would screen out static internal electric fields. In 1965, Anderson and Blount proposed the concept of ferroelectric metal, however, it is only until re
Advances in complex oxide heteroepitaxy have highlighted the enormous potential of utilizing strain engineering via lattice mismatch to control ferroelectricity in thin-film heterostructures. This approach, however, lacks the ability to produce large