ﻻ يوجد ملخص باللغة العربية
Noncoplanar radiation therapy treatment planning has the potential to improve dosimetric quality as compared to traditional coplanar techniques. Likewise, automated treatment planning algorithms can reduce a planners active treatment planning time and remove inter-planner variability. To address the limitations of traditional treatment planning, we have been developing a suite of algorithms called station parameter optimized radiation therapy (SPORT). Within the SPORT suite of algorithms, we propose a method called NC-POPS to produce noncoplanar (NC) plans using the fully automated Pareto Optimal Projection Search (POPS) algorithm. Our NC-POPS algorithm extends the original POPS algorithm to the noncoplanar setting with potential applications to both IMRT and VMAT. The proposed algorithm consists of two main parts: 1) noncoplanar beam angle optimization (BAO) and 2) fully automated inverse planning using the POPS algorithm. We evaluate the performance of NC-POPS by comparing between various noncoplanar and coplanar configurations. To evaluate plan quality, we compute the homogeneity index (HI), conformity index (CI), and dose-volume histogram (DVH) statistics for various organs-at-risk (OARs). As compared to the evaluated coplanar baseline methods, the proposed NC-POPS method achieves significantly better OAR sparing, comparable or better dose conformity, and similar dose homogeneity. Our proposed NC-POPS algorithm provides a modular approach for fully automated treatment planning of noncoplanar IMRT cases with the potential to substantially improve treatment planning workflow and plan quality.
Pancreas stereotactic body radiotherapy treatment planning requires planners to make sequential, time consuming interactions with the treatment planning system (TPS) to reach the optimal dose distribution. We seek to develop a reinforcement learning
We summarize recent results and ongoing activities in mathematical algorithms and computer science methods related to proton computed tomography (pCT) and intensity-modulated particle therapy (IMPT) treatment planning. Proton therapy necessitates a h
Cancer is a primary cause of morbidity and mortality worldwide. The radiotherapy plays a more and more important role in cancer treatment. In the radiotherapy, the dose distribution maps in patient need to be calculated and evaluated for the purpose
We present an optimization-based approach to radiation treatment planning over time. Our approach formulates treatment planning as an optimal control problem with nonlinear patient health dynamics derived from the standard linear-quadratic cell survi
Purpose: For Monte Carlo simulation of radiotherapy, x-ray CT number of every system needs to be calibrated and converted to mass density and elemental composition. This study aims to formulate material properties of body tissues for practical two-st