ﻻ يوجد ملخص باللغة العربية
Formal Methods for the Informal Engineer (FMIE) was a workshop held at the Broad Institute of MIT and Harvard in 2021 to explore the potential role of verified software in the biomedical software ecosystem. The motivation for organizing FMIE was the recognition that the life sciences and medicine are undergoing a transition from being passive consumers of software and AI/ML technologies to fundamental drivers of new platforms, including those which will need to be mission and safety-critical. Drawing on conversations leading up to and during the workshop, we make five concrete recommendations to help software leaders organically incorporate tools, techniques, and perspectives from formal methods into their project planning and development trajectories.
In Software Product Line Engineering (SPLE), a portfolio of similar systems is developed from a shared set of software assets. Claimed benefits of SPLE include reductions in the portfolio size, cost of software development and time to production, as
This volume contains the proceedings of F-IDE 2019, the fifth international workshop on Formal Integrated Development Environment, which was held on October 7, 2019 in Porto, Portugal, as part of FM19, the 3rd World Congress on Formal Methods. High l
This volume contains the proceedings of F-IDE 2021, the sixth international workshop on Formal Integrated Development Environment, which was held online on May 24-25, 2021, as part of NFM21, the 13th NASA Formal Methods Symposium. High levels of safe
Formal Verification (FV) and Machine Learning (ML) can seem incompatible due to their opposite mathematical foundations and their use in real-life problems: FV mostly relies on discrete mathematics and aims at ensuring correctness; ML often relies on
Industrial automation systems (IAS) need to be highly dependable; they should not merely function as expected but also do so in a reliable, safe, and secure manner. Formal methods are mathematical techniques that can greatly aid in developing dependa