ﻻ يوجد ملخص باللغة العربية
Polar van der Waals (vdW) crystals that support phonon polaritons have recently attracted much attention because they can confine infrared and terahertz (THz) light to deeply subwavelength dimensions, allowing for the guiding and manipulation of light at the nanoscale. The practical applications of these crystals in devices rely strongly on deterministic engineering of their spatially localized electromagnetic field distributions, which has remained challenging. This study demonstrates that polariton interference can be enhanced and tailored by patterning the vdW crystal {alpha}-MoO3 into microstructures that support highly in-plane anisotropic phonon polaritons. The orientation of the polaritonic in-plane isofrequency curve relative to the microstructure edges is a critical parameter governing the polariton interference, rendering the configuration of infrared electromagnetic field localizations by enabling the tuning of the microstructure size and shape and the excitation frequency. Thus, our study presents an effective rationale for engineering infrared light flow in planar photonic devices.
We present high quality factor optical nanoresonators operating in the mid-IR to far-IR based on phonon polaritons in van der Waals materials. The nanoresonators are disks patterned from isotopically pure hexagonal boron nitride (isotopes 10B and 11B
Metasurfaces with strongly anisotropic optical properties can support deep subwavelength-scale confined electromagnetic waves (polaritons) that promise opportunities for controlling light in photonic and optoelectronic applications. We develop a mid-
Hyperbolic media have attracted much attention in the photonics community, thanks to their ability to confine light to arbitrarily small volumes and to their use for super-resolution applications. The 2D counterpart of these media can be achieved wit
Highly confined and low-loss hyperbolic phonon polaritons (HPhPs) sustained in van der Waals crystals exhibit outstanding capabilities of concentrating long-wave electromagnetic fields deep to the subwavelength region. Precise tuning on the HPhP prop
Vertical stacking of atomically thin layered materials opens new possibilities for the fabrication of heterostructures with favorable optoelectronic properties. The combination of graphene, hexagonal boron nitride and semiconducting transition metal