ﻻ يوجد ملخص باللغة العربية
We study the transverse mode instability (TMI) in the limit where a single higher-order mode (HOM) is present. We demonstrate that when the beat length between the fundamental mode and the HOM is small compared to the length scales on which the pump amplitude and the optical mode amplitudes vary, TMI is a three-wave mixing process in which the two optical modes beat with the phase-matched component of the index of refraction that is induced by the thermal grating. This limit is the usual limit in applications, and in this limit TMI is identified as a stimulated thermal Rayleigh scattering (STRS) process. We demonstrate that a phase-matched model that is based on the three-wave mixing equations can have a large computational advantage over current coupled mode methods that must use longitudinal step sizes that are small compared to the beat length.
We demonstrate a Ho:YLF regenerative amplifier (RA) overcoming bifurcation instability and consequently achieving high extraction energies of 6.9 mJ at a repetition rate of 1 kHz with pulse-to-pulse fluctuations of 1.1%. Measurements of the output pu
High frequency fluctuation in the optical signal generated in Fourier-Domain Mode Locked fiber laser (FDML-FL), which is the major problem and degrades the laser performance, is not yet fully analyzed or studied. The basic theory which is causing thi
We introduce a model for spatiotemporal modelocking in multimode fiber lasers, which is based on the (3+1)-dimensional cubic-quintic complex Ginzburg-Landau equation (cGLE) with conservative and dissipative nonlinearities and a 2-dimensional transver
We derive a simple model for a two transverse mode laser (that considers the TEM00 and TEM10 modes) in which an injected signal with the shape of the TEM10 mode but a frequency close to that of the TEM00 mode is injected.
Three mode parametric instability has been predicted in Advanced gravitational wave detectors. Here we present the first observation of this phenomenon in a large scale suspended optical cavity designed to be comparable to those of advanced gravitati