ﻻ يوجد ملخص باللغة العربية
Three-dimensional (3D) compensated MnBi2Te4 is antiferromagnetic, but undergoes a spin-flop transition at intermediate fields, resulting in a canted phase before saturation. In this work, we experimentally show that the anomalous Hall effect (AHE) in MnBi2Te4 originates from a topological response that is sensitive to the perpendicular magnetic moment and to its canting angle. Synthesis by molecular beam epitaxy allows us to obtain a large-area quasi-3D 24-layer MnBi2Te4 with near-perfect compensation that hosts the phase diagram observed in bulk which we utilize to probe the AHE. This AHE is seen to exhibit an antiferromagnetic response at low magnetic fields, and a clear evolution at intermediate fields through surface and bulk spin-flop transitions into saturation. Throughout this evolution, the AHE is super-linear versus magnetization rather than the expected linear relationship. We reveal that this discrepancy is related to the canting angle, consistent with the symmetry of the crystal. Our findings suggests that novel topological responses may be found in non-collinear ferromagnetic, and antiferromagnetic phases.
The Hall effect, the anomalous Hall effect and the spin Hall effect are fundamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively. The quant
The quantum anomalous Hall (QAH) state is a two-dimensional bulk insulator with a non-zero Chern number in absence of external magnetic fields. Protected gapless chiral edge states enable dissipationless current transport in electronic devices. Dopin
Engineering the anomalous Hall effect (AHE) in the emerging magnetic topological insulators (MTIs) has great potentials for quantum information processing and spintronics applications. In this letter, we synthesize the epitaxial Bi2Te3/MnTe magnetic
The polarity-tunable anomalous Hall effect (AHE) is useful for electronic device applications. Here in a magnetic topological insulator MnBi2Te4 grown by molecular beam epitaxy, we report the polarity change of the AHE by increasing the temperature o
The Berry phase picture provides important insights into the electronic properties of condensed matter systems. The intrinsic anomalous Hall (AH) effect can be understood as a consequence of non-zero Berry curvature in momentum space. The realization