ﻻ يوجد ملخص باللغة العربية
Given the rapid changes in telecommunication systems and their higher dependence on artificial intelligence, it is increasingly important to have models that can perform well under different, possibly adverse, conditions. Deep Neural Networks (DNNs) using convolutional layers are state-of-the-art in many tasks in communications. However, in other domains, like image classification, DNNs have been shown to be vulnerable to adversarial perturbations, which consist of imperceptible crafted noise that when added to the data fools the model into misclassification. This puts into question the security of DNNs in communication tasks, and in particular in modulation recognition. We propose a novel framework to test the robustness of current state-of-the-art models where the adversarial perturbation strength is dependent on the signal strength and measured with the signal to perturbation ratio (SPR). We show that current state-of-the-art models are susceptible to these perturbations. In contrast to current research on the topic of image classification, modulation recognition allows us to have easily accessible insights on the usefulness of the features learned by DNNs by looking at the constellation space. When analyzing these vulnerable models we found that adversarial perturbations do not shift the symbols towards the nearest classes in constellation space. This shows that DNNs do not base their decisions on signal statistics that are important for the Bayes-optimal modulation recognition model, but spurious correlations in the training data. Our feature analysis and proposed framework can help in the task of finding better models for communication systems.
In communication systems, there are many tasks, like modulation recognition, which rely on Deep Neural Networks (DNNs) models. However, these models have been shown to be susceptible to adversarial perturbations, namely imperceptible additive noise c
Adversarial robust models have been shown to learn more robust and interpretable features than standard trained models. As shown in [cite{tsipras2018robustness}], such robust models inherit useful interpretable properties where the gradient aligns pe
We consider a wireless communication system that consists of a transmitter, a receiver, and an adversary. The transmitter transmits signals with different modulation types, while the receiver classifies its received signals to modulation types using
Modulation classification, recognized as the intermediate step between signal detection and demodulation, is widely deployed in several modern wireless communication systems. Although many approaches have been studied in the last decades for identify
Modulation Classification (MC) refers to the problem of classifying the modulation class of a wireless signal. In the wireless communications pipeline, MC is the first operation performed on the received signal and is critical for reliable decoding.