ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantitative bounds on Impedance-to-Impedance operators with applications to fast direct solvers for PDEs

81   0   0.0 ( 0 )
 نشر من قبل Jeremy Marzuola
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove quantitative norm bounds for a family of operators involving impedance boundary conditions on convex, polygonal domains. A robust numerical construction of Helmholtz scattering solutions in variable media via the Dirichlet-to-Neumann operator involves a decomposition of the domain into a sequence of rectangles of varying scales and constructing impedance-to-impedance boundary operators on each subdomain. Our estimates in particular ensure the invertibility, with quantitative bounds in the frequency, of the merge operators required to reconstruct the original Dirichlet-to-Neumann operator in terms of these impedance-to-impedance operators of the sub-domains. A key step in our proof is to obtain Neumann and Dirichlet boundary trace estimates on solutions of the impedance problem, which are of independent interest. In addition to the variable media setting, we also construct bounds for similar merge operators in the obstacle scattering problem.



قيم البحث

اقرأ أيضاً

A novel computational, non-iterative and noise-robust reconstruction method is introduced for the planar anisotropic inverse conductivity problem. The method is based on bypassing the unstable step of the reconstruction of the values of the isotherma l coordinates on the boundary of the domain. Non-uniqueness of the inverse problem is dealt with by recovering the unique isotropic conductivity that can be achieved as a deformation of the measured anisotropic conductivity by emph{isothermal coordinates}. The method shows how isotropic D-bar reconstruction methods have produced reasonable and informative reconstructions even when used on EIT data known to come from anisotropic media, and when the boundary shape is not known precisely. Furthermore, the results pave the way for regularized anisotropic EIT. Key aspects of the approach involve D-bar methods and inverse scattering theory, complex geometrical optics solutions, and quasi-conformal mapping techniques.
The goal of this paper is to establish relative perturbation bounds, tailored for empirical covariance operators. Our main results are expansions for empirical eigenvalues and spectral projectors, leading to concentration inequalities and limit theor ems. Our framework is very general, allowing for a huge variety of stationary, ergodic sequences, requiring only $p > 4$ moments. One of the key ingredients is a specific separation measure for population eigenvalues, which we call the relative rank. Developing a new algebraic approach for relative perturbations, we show that this relative rank gives rise to necessary and sufficient conditions for our concentration inequalities and limit theorems.
We study sparse recovery with structured random measurement matrices having independent, identically distributed, and uniformly bounded rows and with a nontrivial covariance structure. This class of matrices arises from random sampling of bounded Rie sz systems and generalizes random partial Fourier matrices. Our main result improves the currently available results for the null space and restricted isometry properties of such random matrices. The main novelty of our analysis is a new upper bound for the expectation of the supremum of a Bernoulli process associated with a restricted isometry constant. We apply our result to prove new performance guarantees for the CORSING method, a recently introduced numerical approximation technique for partial differential equations (PDEs) based on compressive sensing.
We study a commonly-used second-kind boundary-integral equation for solving the Helmholtz exterior Neumann problem at high frequency, where, writing $Gamma$ for the boundary of the obstacle, the relevant integral operators map $L^2(Gamma)$ to itself. We prove new frequency-explicit bounds on the norms of both the integral operator and its inverse. The bounds on the norm are valid for piecewise-smooth $Gamma$ and are sharp, and the bounds on the norm of the inverse are valid for smooth $Gamma$ and are observed to be sharp at least when $Gamma$ is curved. Together, these results give bounds on the condition number of the operator on $L^2(Gamma)$; this is the first time $L^2(Gamma)$ condition-number bounds have been proved for this operator for obstacles other than balls.
This paper is devoted to studying impedance eigenvalues (that is, eigenvalues of a particular Dirichlet-to-Neumann map) for the time harmonic linear elastic wave problem, and their potential use as target-signatures for fluid-solid interaction proble ms. We first consider several possible families of eigenvalues of the elasticity problem, focusing on certain impedance eigenvalues that are an analogue of Steklov eigenvalues. We show that one of these families arises naturally in inverse scattering. We also analyse their approximation from far field measurements of the scattered pressure field in the fluid, and illustrate several alternative methods of approximation in the case of an isotropic elastic disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا