ﻻ يوجد ملخص باللغة العربية
We prove quantitative norm bounds for a family of operators involving impedance boundary conditions on convex, polygonal domains. A robust numerical construction of Helmholtz scattering solutions in variable media via the Dirichlet-to-Neumann operator involves a decomposition of the domain into a sequence of rectangles of varying scales and constructing impedance-to-impedance boundary operators on each subdomain. Our estimates in particular ensure the invertibility, with quantitative bounds in the frequency, of the merge operators required to reconstruct the original Dirichlet-to-Neumann operator in terms of these impedance-to-impedance operators of the sub-domains. A key step in our proof is to obtain Neumann and Dirichlet boundary trace estimates on solutions of the impedance problem, which are of independent interest. In addition to the variable media setting, we also construct bounds for similar merge operators in the obstacle scattering problem.
A novel computational, non-iterative and noise-robust reconstruction method is introduced for the planar anisotropic inverse conductivity problem. The method is based on bypassing the unstable step of the reconstruction of the values of the isotherma
The goal of this paper is to establish relative perturbation bounds, tailored for empirical covariance operators. Our main results are expansions for empirical eigenvalues and spectral projectors, leading to concentration inequalities and limit theor
We study sparse recovery with structured random measurement matrices having independent, identically distributed, and uniformly bounded rows and with a nontrivial covariance structure. This class of matrices arises from random sampling of bounded Rie
We study a commonly-used second-kind boundary-integral equation for solving the Helmholtz exterior Neumann problem at high frequency, where, writing $Gamma$ for the boundary of the obstacle, the relevant integral operators map $L^2(Gamma)$ to itself.
This paper is devoted to studying impedance eigenvalues (that is, eigenvalues of a particular Dirichlet-to-Neumann map) for the time harmonic linear elastic wave problem, and their potential use as target-signatures for fluid-solid interaction proble