ترغب بنشر مسار تعليمي؟ اضغط هنا

Challenges for Optical Flow Estimates in Elastography

148   0   0.0 ( 0 )
 نشر من قبل Simon Hubmer
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider visualization of displacement fields via optical flow methods in elastographic experiments consisting of a static compression of a sample. We propose an elastographic optical flow method (EOFM) which takes into account experimental constraints, such as appropriate boundary conditions, the use of speckle information, as well as the inclusion of structural information derived from knowledge of the background material. We present numerical results based on both simulated and experimental data from an elastography experiment in order to demonstrate the relevance of our proposed approach.



قيم البحث

اقرأ أيضاً

In this work we consider the inverse problem of reconstructing the optical properties of a layered medium from an elastography measurement where optical coherence tomography is used as the imaging method. We hereby model the sample as a linear dielec tric medium so that the imaging parameter is given by its electric susceptibility, which is a frequency- and depth-dependent parameter. Additionally to the layered structure (assumed to be valid at least in the small illuminated region), we allow for small scatterers which we consider to be randomly distributed, a situation which seems more realistic compared to purely homogeneous layers. We then show that a unique reconstruction of the susceptibility of the medium (after averaging over the small scatterers) can be achieved from optical coherence tomography measurements for different compression states of the medium.
In this paper, we consider the problem of estimating the internal displacement field of an object which is being subjected to a deformation, from Optical Coherence Tomography (OCT) images before and after compression. For the estimation of the intern al displacement field we propose a novel algorithm, which utilizes particular speckle information to enhance the quality of the motion estimation. We present numerical results based on both simulated and experimental data in order to demonstrate the usefulness of our approach, in particular when applied for quantitative elastography, when the material parameters are estimated in a second step based on the internal displacement field.
Riesz potentials are well known objects of study in the theory of singular integrals that have been the subject of recent, increased interest from the numerical analysis community due to their connections with fractional Laplace problems and proposed use in certain domain decomposition methods. While the L$^p$-mapping properties of Riesz potentials on flat geometries are well-established, comparable results on rougher geometries for Sobolev spaces are very scarce. In this article, we study the continuity properties of the surface Riesz potential generated by the $1/sqrt{x}$ singular kernel on a polygonal domain $Omega subset mathbb{R}^2$. We prove that this surface Riesz potential maps L$^{2}(partialOmega)$ into H$^{+1/2}(partialOmega)$. Our proof is based on a careful analysis of the Riesz potential in the neighbourhood of corners of the domain $Omega$. The main tool we use for this corner analysis is the Mellin transform which can be seen as a counterpart of the Fourier transform that is adapted to corner geometries.
215 - K. Mitra , M. Vohralik 2021
The Richards equation is commonly used to model the flow of water and air through soil, and it serves as a gateway equation for multiphase flows through porous media. It is a nonlinear advection-reaction-diffusion equation that exhibits both paraboli c-hyperbolic and parabolic-elliptic kinds of degeneracies. In this study, we provide reliable, fully computable, and locally space-time efficient a posteriori error bounds for numerical approximations of the fully degenerate Richards equation. For showing global reliability, a nonlocal-in-time error estimate is derived individually for the time-integrated $H^1(H^{-1})$, $L^2(L^2)$, and the $L^2(H^1)$ errors. A maximum principle and a degeneracy estimator are employed for the last one. Global and local space-time efficiency error bounds are then obtained in a standard $H^1(H^{-1})cap L^2(H^1)$ norm. The reliability and efficiency norms employed coincide when there is no nonlinearity. Moreover, error contributors such as flux nonconformity, time discretization, quadrature, linearization, and data oscillation are identified and separated. The estimates are also valid in a setting where iterative linearization with inexact solvers is considered. Numerical tests are conducted for nondegenerate and degenerate cases having exact solutions, as well as for a realistic case. It is shown that the estimators correctly identify the errors up to a factor of the order of unity.
The G-equation is a well-known model for studying front propagation in turbulent combustion. In this paper, we develop an efficient model reduction method for computing textcolor{black}{regular solutions} of viscous G-equations in incompressible stea dy and time-periodic cellular flows. Our method is based on the Galerkin proper orthogonal decomposition (POD) method. To facilitate the algorithm design and convergence analysis, we decompose the solution of the viscous G-equation into a mean-free part and a mean part, where their evolution equations can be derived accordingly. We construct the POD basis from the solution snapshots of the mean-free part. With the POD basis, we can efficiently solve the evolution equation for the mean-free part of the solution to the viscous G-equation. After we get the mean-free part of the solution, the mean of the solution can be recovered. We also provide rigorous convergence analysis for our method. Numerical results for textcolor{black}{viscous G-equations and curvature G-equations} are presented to demonstrate the accuracy and efficiency of the proposed method. In addition, we study the turbulent flame speeds of the viscous G-equations in incompressible cellular flows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا