ﻻ يوجد ملخص باللغة العربية
Deep learning provides powerful means to learn from spectrum data and solve complex tasks in 5G and beyond such as beam selection for initial access (IA) in mmWave communications. To establish the IA between the base station (e.g., gNodeB) and user equipment (UE) for directional transmissions, a deep neural network (DNN) can predict the beam that is best slanted to each UE by using the received signal strengths (RSSs) from a subset of possible narrow beams. While improving the latency and reliability of beam selection compared to the conventional IA that sweeps all beams, the DNN itself is susceptible to adversarial attacks. We present an adversarial attack by generating adversarial perturbations to manipulate the over-the-air captured RSSs as the input to the DNN. This attack reduces the IA performance significantly and fools the DNN into choosing the beams with small RSSs compared to jamming attacks with Gaussian or uniform noise.
This paper presents DeepIA, a deep learning solution for faster and more accurate initial access (IA) in 5G millimeter wave (mmWave) networks when compared to conventional IA. By utilizing a subset of beams in the IA process, DeepIA removes the need
We consider adversarial machine learning based attacks on power allocation where the base station (BS) allocates its transmit power to multiple orthogonal subcarriers by using a deep neural network (DNN) to serve multiple user equipments (UEs). The D
This paper presents channel-aware adversarial attacks against deep learning-based wireless signal classifiers. There is a transmitter that transmits signals with different modulation types. A deep neural network is used at each receiver to classify i
We consider a wireless communication system, where a transmitter sends signals to a receiver with different modulation types while the receiver classifies the modulation types of the received signals using its deep learning-based classifier. Concurre
We consider a wireless communication system that consists of a transmitter, a receiver, and an adversary. The transmitter transmits signals with different modulation types, while the receiver classifies its received signals to modulation types using