ﻻ يوجد ملخص باللغة العربية
This paper proposes a general framework for constructing feedback controllers that drive complex dynamical systems to efficient steady-state (or slowly varying) operating points. Efficiency is encoded using generalized equations which can model a broad spectrum of useful objectives, such as optimality or equilibria (e.g. Nash, Wardrop, etc.) in noncooperative games. The core idea of the proposed approach is to directly implement iterative solution (or equilibrium seeking) algorithms in closed loop with physical systems. Sufficient conditions for closed-loop stability and robustness are derived; these also serve as the first closed-loop stability results for sampled-data feedback-based optimization. Numerical simulations of smart building automation and game-theoretic robotic swarm coordination support the theoretical results.
In this paper, we aim to develop distributed continuous-time algorithms under directed graphs to seek the Nash equilibrium of a noncooperative game. Motivated by the existing consensus-based designs in Gadjov and Pavel (2019), we present a distribute
We consider optimization problems for (networked) systems, where we minimize a cost that includes a known time-varying function associated with the systems outputs and an unknown function of the inputs. We focus on a data-based online projected gradi
We introduce a novel class of Nash equilibrium seeking dynamics for non-cooperative games with a finite number of players, where the convergence to the Nash equilibrium is bounded by a KL function with a settling time that can be upper bounded by a p
In this technical note, we propose a practicable quantized sampled velocity data coupling protocol for synchronization of a set of harmonic oscillators. The coupling protocol is designed in a quantized way via interconnecting the velocities encoded b
In this paper we propose a new operator splitting algorithm for distributed Nash equilibrium seeking under stochastic uncertainty, featuring relaxation and inertial effects. Our work is inspired by recent deterministic operator splitting methods, des