ﻻ يوجد ملخص باللغة العربية
Random forests are one of the most popular machine learning methods due to their accuracy and variable importance assessment. However, random forests only provide variable importance in a global sense. There is an increasing need for such assessments at a local level, motivated by applications in personalized medicine, policy-making, and bioinformatics. We propose a new nonparametric estimator that pairs the flexible random forest kernel with local sufficient dimension reduction to adapt to a regression functions local structure. This allows us to estimate a meaningful directional local variable importance measure at each prediction point. We develop a computationally efficient fitting procedure and provide sufficient conditions for the recovery of the splitting directions. We demonstrate significant accuracy gains of our proposed estimator over competing methods on simulated and real regression problems. Finally, we apply the proposed method to seasonal particulate matter concentration data collected in Beijing, China, which yields meaningful local importance measures. The methods presented here are available in the drforest Python package.
The selection of grouped variables using the random forest algorithm is considered. First a new importance measure adapted for groups of variables is proposed. Theoretical insights into this criterion are given for additive regression models. Second,
We characterize and study variable importance (VIMP) and pairwise variable associations in binary regression trees. A key component involves the node mean squared error for a quantity we refer to as a maximal subtree. The theory naturally extends fro
This preprint has been reviewed and recommended by Peer Community In Evolutionary Biology (http://dx.doi.org/10.24072/pci.evolbiol.100036). Approximate Bayesian computation (ABC) has grown into a standard methodology that manages Bayesian inference f
We introduce random survival forests, a random forests method for the analysis of right-censored survival data. New survival splitting rules for growing survival trees are introduced, as is a new missing data algorithm for imputing missing data. A co
This paper extends recent work on boosting random forests to model non-Gaussian responses. Given an exponential family $mathbb{E}[Y|X] = g^{-1}(f(X))$ our goal is to obtain an estimate for $f$. We start with an MLE-type estimate in the link space and