ﻻ يوجد ملخص باللغة العربية
We characterize the essential spectrum of the plasmonic problem for polyhedra in $mathbb{R}^3$. The description is particularly simple for convex polyhedra and permittivities $epsilon < - 1$. The plasmonic problem is interpreted as a spectral problem through a boundary integral operator, the direct value of the double layer potential, also known as the Neumann--Poincare operator. We therefore study the spectral structure of the the double layer potential for polyhedral cones and polyhedra.
In this paper we prove Hormander-Mihlin multiplier theorems for pseudo-multipliers associated to the harmonic oscillator (also called the Hermite operator). Our approach can be extended to also obtain the $L^p$-boundedness results for multilinear pse
In this paper we analyse the structure of the spaces of smooth type functions, generated by elements of arbitrary Hilbert spaces, as a continuation of the research in our previous papers in this series. We prove that these spaces are perfect sequence
In this work we continue our research on nonharmonic analysis of boundary value problems as initiated in our recent paper (IMRN 2016). There, we assumed that the eigenfunctions of the model operator on which the construction is based do not have zero
In this note we give several characterisations of weights for two-weight Hardy inequalities to hold on general metric measure spaces possessing polar decompositions. Since there may be no differentiable structure on such spaces, the inequalities are
This note contains a representation formula for positive solutions of linear degenerate second-order equations of the form $$ partial_t u (x,t) = sum_{j=1}^m X_j^2 u(x,t) + X_0 u(x,t) qquad (x,t) in mathbb{R}^N times, ]- infty ,T[,$$ proved by a func