ترغب بنشر مسار تعليمي؟ اضغط هنا

Monolayer 1T-NbSe2 as a 2D correlated magnetic insulator

122   0   0.0 ( 0 )
 نشر من قبل Mengke Liu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Monolayer group-V transition metal dichalcogenides in their 1T phase have recently emerged as a platform to investigate rich phases of matter, such as spin liquid and ferromagnetism, resulting from strong electron correlations. Although 1T phase NbSe2 does not occur naturally in bulk form, it has been discovered that the 1T and 1H phases can coexist when monolayer NbSe2 is grown via molecular beam epitaxy (MBE). This discovery has inspired theoretical investigations predicting collective phenomena such as ferromagnetism in two dimensions. Here, by controlling the MBE growth parameters, we demonstrate the successful growth of single-phase 1T-NbSe2. By combining scanning tunneling microscopy/spectroscopy and ab initio calculations, we show that this system is a charge-transfer insulator, with the upper Hubbard band located above the valence band maximum. Furthermore, by creating a vertical 1T/2H NbSe2 heterostructure, we find evidence of exchange interactions between the localized magnetic moments in 1T phase and the metallic/superconducting phase, as manifested by Kondo resonances and Yu-Shiba-Rusinov bound states.



قيم البحث

اقرأ أيضاً

Mott state in 1T-TaS2 is predicted to host quantum spin liquids (QSL). However, its insulating mechanism is controversial due to complications from interlayer coupling. Here, we study the Mott state in monolayer 1T-NbSe2, an electronic analogy to TaS 2 exempt from interlayer coupling, using spectroscopic imaging scanning tunneling microscopy and first principles calculations. Monolayer NbSe2 surprisingly displays two types of Star-of-David (SD) motifs with different Mott gap sizes, that are interconvertible via temperature variation. And, bilayer 1T-NbSe2 shows Mott collapse by interlayer coupling. Our calculation unveils the two types of SDs possess distinct structural distortions, altering the effective Coulomb energies of the central Nb orbital. Our calculation suggests the Mott gap, the same parameter for determining the QSL regime, is tunable with strain. This finding offers a general strategy for manipulating the Mott state in 1T-NbSe2 and related systems via structural distortions, which may be tuned into the potential QSL regime.
122 - Y. D. Wang , W. L. Yao , Z. M. Xin 2020
1T-TaS$_2$ undergoes successive phase transitions upon cooling and eventually enters an insulating state of mysterious origin. Some consider this state to be a band insulator with interlayer stacking order, yet others attribute it to Mott physics tha t support a quantum spin liquid state.Here, we determine the electronic and structural properties of 1T-TaS$_2$ using angle-resolved photoemission spectroscopy and X-Ray diffraction. At low temperatures, the 2$pi$/2c-periodic band dispersion, along with half-integer-indexed diffraction peaks along the c axis, unambiguously indicates that the ground state of 1T-TaS$_2$ is a band insulator with interlayer dimerization. Upon heating, however, the system undergoes a transition into a Mott insulating state, which only exists in a narrow temperature window. Our results refute the idea of searching for quantum magnetism in 1T-TaS$_2$ only at low temperatures, and highlight the competition between on-site Coulomb repulsion and interlayer hopping as a crucial aspect for understanding the materials electronic properties.
Understanding Mott insulators and charge density waves (CDW) is critical for both fundamental physics and future device applications. However, the relationship between these two phenomena remains unclear, particularly in systems close to two-dimensio nal (2D) limit. In this study, we utilize scanning tunneling microscopy/spectroscopy to investigate monolayer 1T-NbSe2 to elucidate the energy of the Mott upper Hubbard band (UHB), and reveal that the spin-polarized UHB is spatially distributed away from the dz2 orbital at the center of the CDW unit. Moreover, the UHB shows a root3 x root3 R30{deg} periodicity in addition to the typically observed CDW pattern. Furthermore, a pattern similar to the CDW order is visible deep in the Mott gap, exhibiting CDW without contribution of the Mott Hubbard band. Based on these findings in monolayer 1T-NbSe2, we provide novel insights into the relation between the correlated and collective electronic structures in monolayer 2D systems.
100 - Feipeng Zheng , Ji Feng 2019
Monolayer 2H-NbSe2 has recently been shown to be a 2-dimensional superconductor, with a coexisting charge-density wave (CDW). As both phenomena are intimately related to electron-lattice interaction, a natural question is how superconductivity and CD W are interrelated through electron-phonon coupling (EPC), which is important to the understanding of 2-dimensional superconductivity. This work investigates the superconductivity of monolayer NbSe2 in CDW phase using the anisotropic Migdal-Eliashberg formalism based on first principles calculations. The mechanism of the competition between and coexistence of the superconductivity and CDW is studied in detail by analyzing EPC. It is found that the intra-pocket scattering is related to superconductivity, leading to almost constant value of superconducting gaps on parts of the Fermi surface. The inter-pocket scattering is found to be responsible for CDW, leading to partial or full bandgap on the remaining Fermi surface. Recent experiment indicates that there is transitioning from regular superconductivity in thin-film NbSe2 to two-gap superconductivity in the bulk, which is shown here to have its origin in the extent of Fermi surface gapping of K and K pockets induced by CDW. Overall blue shifts of the phonons and sharp decrease of Eliashberg spectrum are found when the CDW forms.
We investigate the electronic physics of layered Ni-based trichalcogenide NiPX$_3$ (X=S, Se), a member of transition-metal trichalcogenides (TMTs) with the chemical formula, ABX$_3$. These Ni-based TMTs distinguish themselves from other TMTs as their low energy electronic physics can be effectively described by the two $e_g$ d-orbitals. The major band kinematics is characterized by the unusal long-range effective hopping between two third nearest-neighbor (TNN) Ni sites in the two-dimensional Ni honeycomb lattice so that the Ni lattice can be equivalently viewed as four weakly coupled honeycomb sublattices. Within each sublattice, the electronic physics is described by a strongly correlated two-orbital graphene-type model that results in an antiferromagnetic (AFM) ground state near half filling. We show that the low energy physics in a paramagnetic state is determined by the eight Dirac cones which locate at $K$, $K$, $frac{K}{2}$ and $frac{K}{2}$ points in the first Brillouin zone with a strong AFM fluctuation between two $K (K)$ and $frac{K}{2} (frac{K}{2})$ Dirac cones and carrier doping can sufficiently suppress the long-range AFM order and allow other competing orders, such as superconductivity, to emerge. The material can be an ideal system to study many exotic phenomena emerged from strong electron-electron correlation, including a potential $dpm id$ superconducting state at high temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا