ﻻ يوجد ملخص باللغة العربية
This paper studies classical weight modules over the $imath$quantum group $mathbf{U}^{imath}$ of type AI. We introduce the notion of based $mathbf{U}^{imath}$-modules by generalizing the notion of based modules over the quantum groups. We prove that each finite-dimensional irreducible classical weight $mathbf{U}^{imath}$-module with integer highest weight is a based $mathbf{U}^{imath}$-module. As a byproduct, a new combinatorial formula for the branching rule from $mathfrak{sl}_n$ to $mathfrak{so}_n$ is obtained.
$imath$quantum groups are generalizations of quantum groups which appear as coideal subalgebras of quantum groups in the theory of quantum symmetric pairs. In this paper, we define the notion of classical weight modules over an $imath$quantum group,
We establish automorphisms with closed formulas on quasi-split $imath$quantum groups of symmetric Kac-Moody type associated to restricted Weyl groups. The proofs are carried out in the framework of $imath$Hall algebras and reflection functors, thanks
The aim of this article is to give explicit formulae for various generating functions, including the generating function of torus-invariant primitive ideals in the big cell of the quantum minuscule grassmannian of type B_n.
We use vertex operators to compute irreducible characters of the Iwahori-Hecke algebra of type $A$. Two general formulas are given for the irreducible characters in terms of those of the symmetric groups or the Iwahori-Hecke algebras in lower degrees
A long standing problem, which has its roots in low-dimensional homotopy theory, is to classify all finite groups $G$ for which the integral group ring $mathbb{Z}G$ has stably free cancellation (SFC). We extend results of R. G. Swan by giving a condi