ﻻ يوجد ملخص باللغة العربية
This article is part of an ongoing investigation of the combinatorics of $q,t$-Catalan numbers $textrm{Cat}_n(q,t)$. We develop a structure theory for integer partitions based on the partition statistics dinv, deficit, and minimum triangle height. Our goal is to decompose the infinite set of partitions of deficit $k$ into a disjoint union of chains $mathcal{C}_{mu}$ indexed by partitions of size $k$. Among other structural properties, these chains can be paired to give refinements of the famous symmetry property $textrm{Cat}_n(q,t)=textrm{Cat}_n(t,q)$. Previously, we introduced a map NU that builds the tail part of each chain $mathcal{C}_{mu}$. Our first main contribution here is to extend $NU$ and construct larger second-order tails for each chain. Second, we introduce new classes of partitions (flagpole partitions and generalized flagpole partitions) and give a recursive construction of the full chain $mathcal{C}_{mu}$ for generalized flagpole partitions $mu$.
The $q,t$-Catalan number $mathrm{Cat}_n(q,t)$ enumerates integer partitions contained in an $ntimes n$ triangle by their dinv and external area statistics. The paper [LLL18 (Lee, Li, Loehr, SIAM J. Discrete Math. 32(2018))] proposed a new approach to
We relate the mixed Hodge structure on the cohomology of open positroid varieties (in particular, their Betti numbers over $mathbb{C}$ and point counts over $mathbb{F}_q$) to Khovanov--Rozansky homology of associated links. We deduce that the mixed H
The $q,t$-Catalan numbers can be defined using rational functions, geometry related to Hilbert schemes, symmetric functions, representation theory, Dyck paths, partition statistics, or Dyck words. After decades of intensive study, it was eventually p
The emph{$q,t$-Catalan numbers} $C_n(q,t)$ are polynomials in $q$ and $t$ that reduce to the ordinary Catalan numbers when $q=t=1$. These polynomials have important connections to representation theory, algebraic geometry, and symmetric functions. Ha
The aim of this paper is two-fold. We first prove several new interpretations of a kind of $(q,t)$-Catalan numbers along with their corresponding $gamma$-expansions using pattern avoiding permutations. Secondly, we give a complete characterization of