ترغب بنشر مسار تعليمي؟ اضغط هنا

A large-scale study on research code quality and execution

310   0   0.0 ( 0 )
 نشر من قبل Ana Trisovic
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This article presents a study on the quality and execution of research code from publicly-available replication datasets at the Harvard Dataverse repository. Research code is typically created by a group of scientists and published together with academic papers to facilitate research transparency and reproducibility. For this study, we define ten questions to address aspects impacting research reproducibility and reuse. First, we retrieve and analyze more than 2000 replication datasets with over 9000 unique R files published from 2010 to 2020. Second, we execute the code in a clean runtime environment to assess its ease of reuse. Common coding errors were identified, and some of them were solved with automatic code cleaning to aid code execution. We find that 74% of R files crashed in the initial execution, while 56% crashed when code cleaning was applied, showing that many errors can be prevented with good coding practices. We also analyze the replication datasets from journals collections and discuss the impact of the journal policy strictness on the code re-execution rate. Finally, based on our results, we propose a set of recommendations for code dissemination aimed at researchers, journals, and repositories.



قيم البحث

اقرأ أيضاً

Context: Software code reviews are an important part of the development process, leading to better software quality and reduced overall costs. However, finding appropriate code reviewers is a complex and time-consuming task. Goals: In this paper, we propose a large-scale study to compare performance of two main source code reviewer recommendation algorithms (RevFinder and a Naive Bayes-based approach) in identifying the best code reviewers for opened pull requests. Method: We mined data from Github and Gerrit repositories, building a large dataset of 51 projects, with more than 293K pull requests analyzed, 180K owners and 157K reviewers. Results: Based on the large analysis, we can state that i) no model can be generalized as best for all projects, ii) the usage of a different repository (Gerrit, GitHub) can have impact on the the recommendation results, iii) exploiting sub-projects information available in Gerrit can improve the recommendation results.
107 - Yuping Fan 2021
Power efficiency is critical in high performance computing (HPC) systems. To achieve high power efficiency on application level, it is vital importance to efficiently distribute power used by application checkpoints. In this study, we analyze the rel ation of application checkpoints and their power consumption. The observations could guide the design of power management.
This paper presents a tertiary review of software quality measurement research. To conduct this review, we examined an initial dataset of 7,811 articles and found 75 relevant and high-quality secondary analyses of software quality research. Synthesiz ing this body of work, we offer an overview of perspectives, measurement approaches, and trends. We identify five distinct perspectives that conceptualize quality as heuristic, as maintainability, as a holistic concept, as structural features of software, and as dependability. We also identify three key challenges. First, we find widespread evidence of validity questions with common measures. Second, we observe the application of machine learning methods without adequate evaluation. Third, we observe the use of aging datasets. Finally, from these observations, we sketch a path toward a theoretical framework that will allow software engineering researchers to systematically confront these weaknesses while remaining grounded in the experiences of developers and the real world in which code is ultimately deployed.
Recently, the automated translation of source code from one programming language to another by using automatic approaches inspired by Neural Machine Translation (NMT) methods for natural languages has come under study. However, such approaches suffer from the same problem as previous NMT approaches on natural languages, viz. the lack of an ability to estimate and evaluate the quality of the translations; and consequently ascribe some measure of interpretability to the models choices. In this paper, we attempt to estimate the quality of source code translations built on top of the TransCoder model. We consider the code translation task as an analog of machine translation (MT) for natural languages, with some added caveats. We present our main motivation from a user study built around code translation; and present a technique that correlates the confidences generated by that model to lint errors in the translated code. We conclude with some observations on these correlations, and some ideas for future work.
One of the main challenges for biomedical research lies in the computer-assisted integrative study of large and increasingly complex combinations of data in order to understand molecular mechanisms. The preservation of the materials and methods of su ch computational experiments with clear annotations is essential for understanding an experiment, and this is increasingly recognized in the bioinformatics community. Our assumption is that offering means of digital, structured aggregation and annotation of the objects of an experiment will provide necessary meta-data for a scientist to understand and recreate the results of an experiment. To support this we explored a model for the semantic description of a workflow-centric Research Object (RO), where an RO is defined as a resource that aggregates other resources, e.g., datasets, software, spreadsheets, text, etc. We applied this model to a case study where we analysed human metabolite variation by workflows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا