ﻻ يوجد ملخص باللغة العربية
We introduce a simple, accurate, and extremely efficient method for numerically solving the multi-marginal optimal transport (MMOT) problems arising in density functional theory. The method relies on (i) the sparsity of optimal plans [for $N$ marginals discretized by $ell$ gridpoints each, general Kantorovich plans require $ell^N$ gridpoints but the support of optimizers is of size $O(ellcdot N)$ [FV18]], (ii) the method of column generation (CG) from discrete optimization which to our knowledge has not hitherto been used in MMOT, and (iii) ideas from machine learning. The well-known bottleneck in CG consists in generating new candidate columns efficiently; we prove that in our context, finding the best new column is an NP-complete problem. To overcome this bottleneck we use a genetic learning method tailormade for MMOT in which the dual state within CG plays the role of an adversary, in loose similarity to Wasserstein GANs. On a sequence of benchmark problems with up to 120 gridpoints and up to 30 marginals, our method always found the exact optimizers. Moreover, empirically the number of computational steps needed to find them appears to scale only polynomially when both $N$ and $ell$ are simultaneously increased (while keeping their ratio fixed to mimic a thermodynamic limit of the particle system).
We propose and analyze an optimal mass transport method for a random genetic drift problem driven by a Moran process under weak-selection. The continuum limit, formulated as a reaction-advection-diffusion equation known as the Kimura equation, inheri
We study multi-marginal optimal transport, a generalization of optimal transport that allows us to define discrepancies between multiple measures. It provides a framework to solve multi-task learning problems and to perform barycentric averaging. How
Computing optimal transport maps between high-dimensional and continuous distributions is a challenging problem in optimal transport (OT). Generative adversarial networks (GANs) are powerful generative models which have been successfully applied to l
We investigate the problem of optimal transport in the so-called Kantorovich form, i.e. given two Radon measures on two compact sets, we seek an optimal transport plan which is another Radon measure on the product of the sets that has these two measu
We formulate and solve a regression problem with time-stamped distributional data. Distributions are considered as points in the Wasserstein space of probability measures, metrized by the 2-Wasserstein metric, and may represent images, power spectra,