ﻻ يوجد ملخص باللغة العربية
We present TransitFit, an open-source Python~3 package designed to fit exoplanetary transit light-curves for transmission spectroscopy studies (Available at https://github.com/joshjchayes/TransitFit and https://github.com/spearnet/TransitFit, with documentation at https://transitfit.readthedocs.io/). TransitFit employs nested sampling to offer efficient and robust multi-epoch, multi-wavelength fitting of transit data obtained from one or more telescopes. TransitFit allows per-telescope detrending to be performed simultaneously with parameter fitting, including the use of user-supplied detrending alogorithms. Host limb darkening can be fitted either independently (uncoupled) for each filter or combined (coupled) using prior conditioning from the PHOENIX stellar atmosphere models. For this TransitFit uses the Limb Darkening Toolkit (LDTk) together with filter profiles, including user-supplied filter profiles. We demonstrate the application of TransitFit in three different contexts. First, we model SPEARNET broadband optical data of the low-density hot-Neptune WASP-127~b. The data were obtained from a globally-distributed network of 0.5m--2.4m telescopes. We find clear improvement in our broadband results using the coupled mode over uncoupled mode, when compared against the higher spectral resolution GTC/OSIRIS transmission spectrum obtained by Chen et al. (2018). Using TransitFit, we fit 26 transit observations by TESS to recover improved ephemerides of the hot-Jupiter WASP-91~b and a transit depth determined to a precision of 170~ppm. Finally, we use TransitFit to conduct an investigation into the contested presence of TTV signatures in WASP-126~b using 126 transits observed by TESS, concluding that there is no statistically significant evidence for such signatures from observations spanning 31 TESS sectors.
This paper presents the atmospheric characterisation of three large, gaseous planets: WASP-127b, WASP-79b and WASP-62b. We analysed spectroscopic data obtained with the G141 grism (1.088 - 1.68 $mu$m) of the Wide Field Camera 3 (WFC3) onboard the Hub
We present new transit light curves for planets in six extrasolar planetary systems. They were acquired with 0.4-2.2 m telescopes located in west Asia, Europe, and South America. When combined with literature data, they allowed us to redetermine syst
We present the discovery by the WASP-South transit survey of three new transiting hot Jupiters, WASP-161 b, WASP-163 b and WASP-170 b. Follow-up radial velocities obtained with the Euler/CORALIE spectrograph and high-precision transit light curves ob
We report the discovery of two new transiting planets from the WASP survey. WASP-42 b is a 0.500 +/- 0.035 M_jup planet orbiting a K1 star at a separation of 0.0548 +/- 0.0017 AU with a period of 4.9816872 +/- 7.3 x 10^-6 days. The radius of WASP-42
(abridged) We report the discovery of three new transiting planets: WASP-85 A b, WASP-116 b, and WASP-149 b. WASP-85 b orbits its host star every 2.66 days, and has a mass of 1.25 M_Jup and a radius of 1.25 R_Jup. The host star is of G5 spectral type