ﻻ يوجد ملخص باللغة العربية
The Jiangmen Underground Neutrino Observatory (JUNO) is designed to determine the neutrino mass ordering and measure neutrino oscillation parameters. A precise muon reconstruction is crucial to reduce one of the major backgrounds induced by cosmic muons. This article proposes a novel muon reconstruction method based on convolutional neural network (CNN) models. In this method, the track information reconstructed by the top tracker is used for network training. The training dataset is augmented by applying a rotation to muon tracks to compensate for the limited angular coverage of the top tracker. The muon reconstruction with the CNN model can produce unbiased tracks with performance that spatial resolution is better than 10 cm and angular resolution is better than 0.6 degrees. By using a GPU accelerated implementation a speedup factor of 100 compared to existing CPU techniques has been demonstrated.
The Jiangmen Neutrino Underground Observatory (JUNO) is a 20$,$kton liquid scintillator detector currently under construction near Kaiping in China. The physics program focuses on the determination of the neutrino mass hierarchy with reactor anti-neu
The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose neutrino experiment designed to measure the neutrino mass hierarchy using a central detector (CD), which contains 20 kton liquid scintillator (LS) surrounded by about 17,000 phot
The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose neutrino experiment designed to measure the neutrino mass hierarchy using a central detector (CD), which contains 20 kton liquid scintillator (LS) surrounded by about 18,000 phot
The Jiangmen Underground Neutrino Observatory (JUNO) is designed to study neutrino mass hierarchy and measure three of the neutrino oscillation parameters with high precision using reactor antineutrinos. It is also able to study many other physical p
The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure $CP$-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural netw