ﻻ يوجد ملخص باللغة العربية
We take a step towards addressing the under-representation of the African continent in NLP research by creating the first large publicly available high-quality dataset for named entity recognition (NER) in ten African languages, bringing together a variety of stakeholders. We detail characteristics of the languages to help researchers understand the challenges that these languages pose for NER. We analyze our datasets and conduct an extensive empirical evaluation of state-of-the-art methods across both supervised and transfer learning settings. We release the data, code, and models in order to inspire future research on African NLP.
Cross-domain named entity recognition (NER) models are able to cope with the scarcity issue of NER samples in target domains. However, most of the existing NER benchmarks lack domain-specialized entity types or do not focus on a certain domain, leadi
Recognizing named entities (NEs) is commonly conducted as a classification problem that predicts a class tag for an NE candidate in a sentence. In shallow structures, categorized features are weighted to support the prediction. Recent developments in
Named Entity Recognition is always important when dealing with major Natural Language Processing tasks such as information extraction, question-answering, machine translation, document summarization etc so in this paper we put forward a survey of Nam
Named entity recognition (NER) is a well-studied task in natural language processing. However, the widely-used sequence labeling framework is difficult to detect entities with nested structures. In this work, we view nested NER as constituency parsin
In Named Entity Recognition (NER), pre-trained language models have been overestimated by focusing on dataset biases to solve current benchmark datasets. However, these biases hinder generalizability which is necessary to address real-world situation