ﻻ يوجد ملخص باللغة العربية
This paper investigates the model aggregation process in an over-the-air federated learning (AirFL) system, where an intelligent reflecting surface (IRS) is deployed to assist the transmission from users to the base station (BS). With the purpose of overcoming the absence of the security examination against malicious individuals, successive interference cancellation (SIC) is adopted as a basis to support analyzing statistic characteristics of model parameters from devices. The objective of this paper is to minimize the mean-square-error by jointly optimizing the receive beamforming vector at the BS, transmit power allocation at users, and phase shift matrix of the IRS, subject to the transmit power constraint for devices, unit-modulus constraint for reflecting elements, SIC decoding order constraint and quality-of-service constraint. To address this complicated problem, alternating optimization is employed to decompose it into three subproblems, where the optimal receive beamforming vector is obtained by solving the first subproblem with the Lagrange dual method. Then, the convex relaxation method is applied to the transmit power allocation subproblem to find a suboptimal solution. Eventually, the phase shift matrix subproblem is addressed by invoking the semidefinite relaxation. Simulation results validate the availability of IRS and the effectiveness of the proposed scheme in improving federated learning performance.
This paper investigates the security enhancement of an intelligent reflecting surface (IRS) assisted non-orthogonal multiple access (NOMA) network, where a distributed IRS enabled NOMA transmission framework is proposed to serve users securely in the
Federated edge learning (FEEL) has emerged as a revolutionary paradigm to develop AI services at the edge of 6G wireless networks as it supports collaborative model training at a massive number of mobile devices. However, model communication over wir
Aiming at the limited battery capacity of a large number of widely deployed low-power smart devices in the Internet-of-things (IoT), this paper proposes a novel intelligent reflecting surface (IRS) empowered unmanned aerial vehicle (UAV) simultaneous
Intelligent reflecting surface (IRS) is an emerging technology that is able to reconfigure the wireless channel via tunable passive signal reflection and thereby enhance the spectral and energy efficiency of wireless networks cost-effectively. In thi
In intelligent reflecting surface (IRS) aided wireless communication systems, channel state information (CSI) is crucial to achieve its promising passive beamforming gains. However, CSI errors are inevitable in practice and generally correlated over