ﻻ يوجد ملخص باللغة العربية
To minimize enormous havoc from disasters, permanent environment monitoring is necessarily required. Thus we propose a novel energy management protocol for energy harvesting wireless sensor networks (EH-WSNs), named the adaptive sensor node management protocol (ASMP). The proposed protocol makes system components to systematically control their performance to conserve the energy. Through this protocol, sensor nodes autonomously activate an additional energy conservation algorithm. ASMP embeds three sampling algorithms. For the optimized environment sampling, we proposed the adaptive sampling algorithm for monitoring (ASA-m). ASA-m estimates the expected time period to occur meaningful change. The meaningful change refers to the distance between two target data for the monitoring QoS. Therefore, ASA-m merely gathers the data the system demands. The continuous adaptive sampling algorithm (CASA) solves the problem to be continuously decreasing energy despite of ASA-m. When the monitored environment shows a linear trend property, the sensor node in CASA rests a sampling process, and the server generates predicted data at the estimated time slot. For guaranteeing the self-sustainability, ASMP uses the recoverable adaptive sampling algorithm (RASA). RASA makes consumed energy smaller than harvested energy by utilizing the predicted data. RASA recharges the energy of the sensor node. Through this method, ASMP achieves both energy conservation and service quality.
In past years there has been increasing interest in field of Wireless Sensor Networks (WSNs). One of the major issue of WSNs is development of energy efficient routing protocols. Clustering is an effective way to increase energy efficiency. Mostly, h
In sensor networks communication by broadcast methods involves many hazards, especially collision. Several MAC layer protocols have been proposed to resolve the problem of collision namely ARBP, where the best achieved success rate is 90%. We hereby
Under the advocacy of the international community, more and more research topics have been built around the ocean. This paper proposed an implementation scheme of marine wireless sensor network monitoring system based on LoRa and MQTT. Different from
Sensors used in applications such as agriculture, weather, etc., monitoring physical parameters like soil moisture, temperature, humidity, will have to sustain their battery power for long intervals of time. In order to accomplish this, parameter whi
A new class of sensing paradigm known as lab-onskin where stretchable and flexible smart sensor devices are integrated into the skin, provides direct monitoring and diagnostic interfaces to the body. Distributed lab-on-skin wireless sensors have the