Convergence analysis of inexact descent algorithm for multiobjective optimizations on Riemannian manifolds without curvature constraints


الملخص بالإنكليزية

We study the convergence issue for inexact descent algorithm (employing general step sizes) for multiobjective optimizations on general Riemannian manifolds (without curvature constraints). Under the assumption of the local convexity/quasi-convexity, local/global convergence results are established. On the other hand, without the assumption of the local convexity/quasi-convexity, but under a Kurdyka-{L}ojasiewicz-like condition, local/global linear convergence results are presented, which seem new even in Euclidean spaces setting and improve sharply the corresponding results in [24] in the case when the multiobjective optimization is reduced to the scalar case. Finally, for the special case when the inexact descent algorithm employing Armijo rule, our results improve sharply/extend the corresponding ones in [3,2,38].

تحميل البحث