ﻻ يوجد ملخص باللغة العربية
A two-component-two-dimensional coupled with one-component-three-dimensional (2C2Dcw1C3D) flow may also be called a real Schur flow (RSF), as its velocity gradient is uniformly of real Schur form, the latter being the intrinsic local property of any general flows. The thermodynamic and `vortic fine structures of RSF are exposed and, in particular, the complete set of equations governing a (viscous and/or driven) 2C2Dcw1C3D flow are derived. The Lie invariances of the decomposed vorticity 2-forms of RSFs in $d$-dimensional Euclidean space $mathbb{E}^d$ for any interger $dge 3$ are also proven, and many Lie-invariant fine results, such as those of the combinations of the entropic and vortic quantities, including the invariances of the decomposed Ertel potential vorticity (and their multiplications by any interger powers of entropy) 3-forms, then follow.
The problem of a flow with its velocity gradient being of textit{real Schur form} uniformly in a cyclic box is formulated for numerical simulation, and a semi-analytic algorithm is developed from the precise structures. Computations starting from two
Solar filaments, also called solar prominences when appearing above the solar limb, are cold, dense materials suspended in the hot tenuous solar corona, consisting of numerous long, fibril-like threads. These threads are the key to disclosing the phy
In these notes, we consider the problem of finding the logarithm or the square root of a real matrix. It is known that for every real n x n matrix, A, if no real eigenvalue of A is negative or zero, then A has a real logarithm, that is, there is a re
The proofs that the real numbers are denumerable will be shown, i.e., that there exists one-to-one correspondence between the natural numbers $N$ and the real numbers $Re$. The general element of the sequence that contains all real numbers will be ex
In this paper we discuss various philosophical aspects of the hyperstructure concept extending networks and higher categories. By this discussion we hope to pave the way for applications and further developments of the mathematical theory of hyperstructures.